Metamath Proof Explorer


Theorem ismrcd1

Description: Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid ), isotone (satisfies mrcss ), and idempotent (satisfies mrcidm ) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses ismrcd.b φBV
ismrcd.f φF:𝒫B𝒫B
ismrcd.e φxBxFx
ismrcd.m φxByxFyFx
ismrcd.i φxBFFx=Fx
Assertion ismrcd1 φdomFIMooreB

Proof

Step Hyp Ref Expression
1 ismrcd.b φBV
2 ismrcd.f φF:𝒫B𝒫B
3 ismrcd.e φxBxFx
4 ismrcd.m φxByxFyFx
5 ismrcd.i φxBFFx=Fx
6 inss1 FIF
7 dmss FIFdomFIdomF
8 6 7 ax-mp domFIdomF
9 8 2 fssdm φdomFI𝒫B
10 ssid BB
11 elpwg BVB𝒫BBB
12 1 11 syl φB𝒫BBB
13 10 12 mpbiri φB𝒫B
14 2 13 ffvelcdmd φFB𝒫B
15 14 elpwid φFBB
16 velpw x𝒫BxB
17 16 3 sylan2b φx𝒫BxFx
18 17 ralrimiva φx𝒫BxFx
19 id x=Bx=B
20 fveq2 x=BFx=FB
21 19 20 sseq12d x=BxFxBFB
22 21 rspcva B𝒫Bx𝒫BxFxBFB
23 13 18 22 syl2anc φBFB
24 15 23 eqssd φFB=B
25 2 ffnd φFFn𝒫B
26 fnelfp FFn𝒫BB𝒫BBdomFIFB=B
27 25 13 26 syl2anc φBdomFIFB=B
28 24 27 mpbird φBdomFI
29 simp2 φzdomFIzzdomFI
30 9 3ad2ant1 φzdomFIzdomFI𝒫B
31 29 30 sstrd φzdomFIzz𝒫B
32 simp3 φzdomFIzz
33 intssuni2 z𝒫Bzz𝒫B
34 31 32 33 syl2anc φzdomFIzz𝒫B
35 unipw 𝒫B=B
36 34 35 sseqtrdi φzdomFIzzB
37 intex zzV
38 elpwg zVz𝒫BzB
39 37 38 sylbi zz𝒫BzB
40 39 3ad2ant3 φzdomFIzz𝒫BzB
41 36 40 mpbird φzdomFIzz𝒫B
42 41 adantr φzdomFIzxzz𝒫B
43 4 3expib φxByxFyFx
44 43 alrimiv φyxByxFyFx
45 44 3ad2ant1 φzdomFIzyxByxFyFx
46 45 adantr φzdomFIzxzyxByxFyFx
47 31 sselda φzdomFIzxzx𝒫B
48 47 elpwid φzdomFIzxzxB
49 intss1 xzzx
50 49 adantl φzdomFIzxzzx
51 48 50 jca φzdomFIzxzxBzx
52 sseq1 y=zyxzx
53 52 anbi2d y=zxByxxBzx
54 fveq2 y=zFy=Fz
55 54 sseq1d y=zFyFxFzFx
56 53 55 imbi12d y=zxByxFyFxxBzxFzFx
57 56 spcgv z𝒫ByxByxFyFxxBzxFzFx
58 42 46 51 57 syl3c φzdomFIzxzFzFx
59 29 sselda φzdomFIzxzxdomFI
60 25 3ad2ant1 φzdomFIzFFn𝒫B
61 60 adantr φzdomFIzxzFFn𝒫B
62 fnelfp FFn𝒫Bx𝒫BxdomFIFx=x
63 61 47 62 syl2anc φzdomFIzxzxdomFIFx=x
64 59 63 mpbid φzdomFIzxzFx=x
65 58 64 sseqtrd φzdomFIzxzFzx
66 65 ralrimiva φzdomFIzxzFzx
67 ssint FzzxzFzx
68 66 67 sylibr φzdomFIzFzz
69 18 3ad2ant1 φzdomFIzx𝒫BxFx
70 id x=zx=z
71 fveq2 x=zFx=Fz
72 70 71 sseq12d x=zxFxzFz
73 72 rspcva z𝒫Bx𝒫BxFxzFz
74 41 69 73 syl2anc φzdomFIzzFz
75 68 74 eqssd φzdomFIzFz=z
76 fnelfp FFn𝒫Bz𝒫BzdomFIFz=z
77 60 41 76 syl2anc φzdomFIzzdomFIFz=z
78 75 77 mpbird φzdomFIzzdomFI
79 9 28 78 ismred φdomFIMooreB