Metamath Proof Explorer


Theorem lmfval

Description: The relation "sequence f converges to point y " in a metric space. (Contributed by NM, 7-Sep-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion lmfval ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡𝐽 ) = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )

Proof

Step Hyp Ref Expression
1 df-lm 𝑡 = ( 𝑗 ∈ Top ↦ { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑗pm ℂ ) ∧ 𝑥 𝑗 ∧ ∀ 𝑢𝑗 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
2 simpr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝐽 )
3 2 unieqd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝐽 )
4 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
5 4 adantr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑋 = 𝐽 )
6 3 5 eqtr4d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝑋 )
7 6 oveq1d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( 𝑗pm ℂ ) = ( 𝑋pm ℂ ) )
8 7 eleq2d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( 𝑓 ∈ ( 𝑗pm ℂ ) ↔ 𝑓 ∈ ( 𝑋pm ℂ ) ) )
9 6 eleq2d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( 𝑥 𝑗𝑥𝑋 ) )
10 2 raleqdv ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ∀ 𝑢𝑗 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ↔ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) )
11 8 9 10 3anbi123d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ( 𝑓 ∈ ( 𝑗pm ℂ ) ∧ 𝑥 𝑗 ∧ ∀ 𝑢𝑗 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) ↔ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) ) )
12 11 opabbidv ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑗pm ℂ ) ∧ 𝑥 𝑗 ∧ ∀ 𝑢𝑗 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )
13 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top )
14 df-3an ( ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) ↔ ( ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ) ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) )
15 14 opabbii { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ) ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) }
16 opabssxp { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ) ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } ⊆ ( ( 𝑋pm ℂ ) × 𝑋 )
17 15 16 eqsstri { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } ⊆ ( ( 𝑋pm ℂ ) × 𝑋 )
18 ovex ( 𝑋pm ℂ ) ∈ V
19 toponmax ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋𝐽 )
20 xpexg ( ( ( 𝑋pm ℂ ) ∈ V ∧ 𝑋𝐽 ) → ( ( 𝑋pm ℂ ) × 𝑋 ) ∈ V )
21 18 19 20 sylancr ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝑋pm ℂ ) × 𝑋 ) ∈ V )
22 ssexg ( ( { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } ⊆ ( ( 𝑋pm ℂ ) × 𝑋 ) ∧ ( ( 𝑋pm ℂ ) × 𝑋 ) ∈ V ) → { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } ∈ V )
23 17 21 22 sylancr ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } ∈ V )
24 1 12 13 23 fvmptd2 ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡𝐽 ) = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( 𝑓 ∈ ( 𝑋pm ℂ ) ∧ 𝑥𝑋 ∧ ∀ 𝑢𝐽 ( 𝑥𝑢 → ∃ 𝑦 ∈ ran ℤ ( 𝑓𝑦 ) : 𝑦𝑢 ) ) } )