| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-lm |
⊢ ⇝𝑡 = ( 𝑗 ∈ Top ↦ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
| 2 |
|
simpr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝐽 ) |
| 3 |
2
|
unieqd |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 4 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑋 = ∪ 𝐽 ) |
| 6 |
3 5
|
eqtr4d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = 𝑋 ) |
| 7 |
6
|
oveq1d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ∪ 𝑗 ↑pm ℂ ) = ( 𝑋 ↑pm ℂ ) ) |
| 8 |
7
|
eleq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ↔ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ) |
| 9 |
6
|
eleq2d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( 𝑥 ∈ ∪ 𝑗 ↔ 𝑥 ∈ 𝑋 ) ) |
| 10 |
2
|
raleqdv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 11 |
8 9 10
|
3anbi123d |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |
| 12 |
11
|
opabbidv |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
| 13 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 14 |
|
df-3an |
⊢ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 15 |
14
|
opabbii |
⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } |
| 16 |
|
opabssxp |
⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ⊆ ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) |
| 17 |
15 16
|
eqsstri |
⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ⊆ ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) |
| 18 |
|
ovex |
⊢ ( 𝑋 ↑pm ℂ ) ∈ V |
| 19 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 20 |
|
xpexg |
⊢ ( ( ( 𝑋 ↑pm ℂ ) ∈ V ∧ 𝑋 ∈ 𝐽 ) → ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) ∈ V ) |
| 21 |
18 19 20
|
sylancr |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) ∈ V ) |
| 22 |
|
ssexg |
⊢ ( ( { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ⊆ ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) ∧ ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) ∈ V ) → { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ∈ V ) |
| 23 |
17 21 22
|
sylancr |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ∈ V ) |
| 24 |
1 12 13 23
|
fvmptd2 |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |