Step |
Hyp |
Ref |
Expression |
1 |
|
mgcoval.1 |
⊢ 𝐴 = ( Base ‘ 𝑉 ) |
2 |
|
mgcoval.2 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
3 |
|
mgcoval.3 |
⊢ ≤ = ( le ‘ 𝑉 ) |
4 |
|
mgcoval.4 |
⊢ ≲ = ( le ‘ 𝑊 ) |
5 |
|
mgcval.1 |
⊢ 𝐻 = ( 𝑉 MGalConn 𝑊 ) |
6 |
|
mgcval.2 |
⊢ ( 𝜑 → 𝑉 ∈ Proset ) |
7 |
|
mgcval.3 |
⊢ ( 𝜑 → 𝑊 ∈ Proset ) |
8 |
|
mgccole.1 |
⊢ ( 𝜑 → 𝐹 𝐻 𝐺 ) |
9 |
|
mgcmntco.1 |
⊢ 𝐶 = ( Base ‘ 𝑋 ) |
10 |
|
mgcmntco.2 |
⊢ < = ( le ‘ 𝑋 ) |
11 |
|
mgcmntco.3 |
⊢ ( 𝜑 → 𝑋 ∈ Proset ) |
12 |
|
mgcmntco.4 |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑉 Monot 𝑋 ) ) |
13 |
|
mgcmntco.5 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝑊 Monot 𝑋 ) ) |
14 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑋 ∈ Proset ) |
15 |
1 9
|
mntf |
⊢ ( ( 𝑉 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐾 ∈ ( 𝑉 Monot 𝑋 ) ) → 𝐾 : 𝐴 ⟶ 𝐶 ) |
16 |
6 11 12 15
|
syl3anc |
⊢ ( 𝜑 → 𝐾 : 𝐴 ⟶ 𝐶 ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝐾 : 𝐴 ⟶ 𝐶 ) |
18 |
1 2 3 4 5 6 7 8
|
mgcf2 |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
20 |
19
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) |
21 |
17 20
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ 𝐶 ) |
22 |
2 9
|
mntf |
⊢ ( ( 𝑊 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐿 ∈ ( 𝑊 Monot 𝑋 ) ) → 𝐿 : 𝐵 ⟶ 𝐶 ) |
23 |
7 11 13 22
|
syl3anc |
⊢ ( 𝜑 → 𝐿 : 𝐵 ⟶ 𝐶 ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝐿 : 𝐵 ⟶ 𝐶 ) |
25 |
1 2 3 4 5 6 7 8
|
mgcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
27 |
26 20
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ 𝐵 ) |
28 |
24 27
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ 𝐶 ) |
29 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → 𝐿 : 𝐵 ⟶ 𝐶 ) |
30 |
29
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐿 ‘ 𝑦 ) ∈ 𝐶 ) |
31 |
18
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) |
32 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑦 ) → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
33 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑦 ) → ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
34 |
32 33
|
breq12d |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑦 ) → ( ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 = ( 𝐺 ‘ 𝑦 ) ) → ( ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
36 |
31 35
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) → ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
37 |
36
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
38 |
37
|
an32s |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
39 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑊 ∈ Proset ) |
40 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝐿 ∈ ( 𝑊 Monot 𝑋 ) ) |
41 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
42 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑉 ∈ Proset ) |
43 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝐹 𝐻 𝐺 ) |
44 |
1 2 3 4 5 42 39 43 41
|
mgccole2 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ≲ 𝑦 ) |
45 |
2 9 4 10 39 14 40 27 41 44
|
ismntd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) < ( 𝐿 ‘ 𝑦 ) ) |
46 |
9 10
|
prstr |
⊢ ( ( 𝑋 ∈ Proset ∧ ( ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ 𝐶 ∧ ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ 𝐶 ∧ ( 𝐿 ‘ 𝑦 ) ∈ 𝐶 ) ∧ ( ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∧ ( 𝐿 ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) < ( 𝐿 ‘ 𝑦 ) ) ) → ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) |
47 |
14 21 28 30 38 45 46
|
syl132anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) |
48 |
47
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) |
49 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ∈ Proset ) |
50 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 : 𝐴 ⟶ 𝐶 ) |
51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
52 |
50 51
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑥 ) ∈ 𝐶 ) |
53 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
54 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
55 |
54
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
56 |
53 55
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐴 ) |
57 |
50 56
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐶 ) |
58 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐿 : 𝐵 ⟶ 𝐶 ) |
59 |
58 55
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐶 ) |
60 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑉 ∈ Proset ) |
61 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ ( 𝑉 Monot 𝑋 ) ) |
62 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑊 ∈ Proset ) |
63 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐹 𝐻 𝐺 ) |
64 |
1 2 3 4 5 60 62 63 51
|
mgccole1 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
65 |
1 9 3 10 60 49 61 51 56 64
|
ismntd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑥 ) < ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
66 |
25
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
67 |
|
2fveq3 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) = ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
68 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝐿 ‘ 𝑦 ) = ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
69 |
67 68
|
breq12d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ↔ ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ↔ ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
71 |
66 70
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) → ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
72 |
71
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) → ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
73 |
72
|
an32s |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
74 |
9 10
|
prstr |
⊢ ( ( 𝑋 ∈ Proset ∧ ( ( 𝐾 ‘ 𝑥 ) ∈ 𝐶 ∧ ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ 𝐶 ∧ ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐶 ) ∧ ( ( 𝐾 ‘ 𝑥 ) < ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ ( 𝐾 ‘ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
75 |
49 52 57 59 65 73 74
|
syl132anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
76 |
75
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
77 |
48 76
|
impbida |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐾 ‘ 𝑥 ) < ( 𝐿 ‘ ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐾 ‘ ( 𝐺 ‘ 𝑦 ) ) < ( 𝐿 ‘ 𝑦 ) ) ) |