| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monoordxrv.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
monoordxrv.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
| 3 |
|
monoordxrv.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 4 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 6 |
|
eleq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 8 |
7
|
breq2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) ) ) |
| 11 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 13 |
12
|
breq2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 14 |
11 13
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 16 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 18 |
17
|
breq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 19 |
16 18
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 21 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 23 |
22
|
breq2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 24 |
21 23
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 26 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 27 |
1 26
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 28 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
| 29 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) ) |
| 31 |
30
|
rspcv |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) ) |
| 32 |
27 28 31
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
| 33 |
32
|
xrleidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) |
| 34 |
33
|
a1d |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) |
| 35 |
34
|
a1i |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑀 ) ) ) ) |
| 36 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 37 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 38 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 39 |
36 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 40 |
39
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 41 |
40
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 42 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
| 43 |
36 42
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ℤ ) |
| 44 |
|
elfzuz3 |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 45 |
37 44
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
| 46 |
|
eluzp1m1 |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 47 |
43 45 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 48 |
|
elfzuzb |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
| 49 |
36 47 48
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 50 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 53 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 54 |
52 53
|
breq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 55 |
54
|
rspcv |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 56 |
49 51 55
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 57 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
| 58 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
| 59 |
52
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℝ* ) ) |
| 60 |
59
|
rspcv |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* → ( 𝐹 ‘ 𝑛 ) ∈ ℝ* ) ) |
| 61 |
39 58 60
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ* ) |
| 62 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ* ) ) |
| 64 |
63
|
rspcv |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ* ) ) |
| 65 |
37 58 64
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ* ) |
| 66 |
|
xrletr |
⊢ ( ( ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑛 ) ∈ ℝ* ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ* ) → ( ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 67 |
57 61 65 66
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 68 |
56 67
|
mpan2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 69 |
41 68
|
animpimp2impd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 70 |
10 15 20 25 35 69
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 71 |
1 70
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) ) |
| 72 |
5 71
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑁 ) ) |