Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | monoordxrv.1 | |
|
monoordxrv.2 | |
||
monoordxrv.3 | |
||
Assertion | monoordxrv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | monoordxrv.1 | |
|
2 | monoordxrv.2 | |
|
3 | monoordxrv.3 | |
|
4 | eluzfz2 | |
|
5 | 1 4 | syl | |
6 | eleq1 | |
|
7 | fveq2 | |
|
8 | 7 | breq2d | |
9 | 6 8 | imbi12d | |
10 | 9 | imbi2d | |
11 | eleq1 | |
|
12 | fveq2 | |
|
13 | 12 | breq2d | |
14 | 11 13 | imbi12d | |
15 | 14 | imbi2d | |
16 | eleq1 | |
|
17 | fveq2 | |
|
18 | 17 | breq2d | |
19 | 16 18 | imbi12d | |
20 | 19 | imbi2d | |
21 | eleq1 | |
|
22 | fveq2 | |
|
23 | 22 | breq2d | |
24 | 21 23 | imbi12d | |
25 | 24 | imbi2d | |
26 | eluzfz1 | |
|
27 | 1 26 | syl | |
28 | 2 | ralrimiva | |
29 | fveq2 | |
|
30 | 29 | eleq1d | |
31 | 30 | rspcv | |
32 | 27 28 31 | sylc | |
33 | 32 | xrleidd | |
34 | 33 | a1d | |
35 | 34 | a1i | |
36 | simprl | |
|
37 | simprr | |
|
38 | peano2fzr | |
|
39 | 36 37 38 | syl2anc | |
40 | 39 | expr | |
41 | 40 | imim1d | |
42 | eluzelz | |
|
43 | 36 42 | syl | |
44 | elfzuz3 | |
|
45 | 37 44 | syl | |
46 | eluzp1m1 | |
|
47 | 43 45 46 | syl2anc | |
48 | elfzuzb | |
|
49 | 36 47 48 | sylanbrc | |
50 | 3 | ralrimiva | |
51 | 50 | adantr | |
52 | fveq2 | |
|
53 | fvoveq1 | |
|
54 | 52 53 | breq12d | |
55 | 54 | rspcv | |
56 | 49 51 55 | sylc | |
57 | 32 | adantr | |
58 | 28 | adantr | |
59 | 52 | eleq1d | |
60 | 59 | rspcv | |
61 | 39 58 60 | sylc | |
62 | fveq2 | |
|
63 | 62 | eleq1d | |
64 | 63 | rspcv | |
65 | 37 58 64 | sylc | |
66 | xrletr | |
|
67 | 57 61 65 66 | syl3anc | |
68 | 56 67 | mpan2d | |
69 | 41 68 | animpimp2impd | |
70 | 10 15 20 25 35 69 | uzind4 | |
71 | 1 70 | mpcom | |
72 | 5 71 | mpd | |