Metamath Proof Explorer


Theorem monoordxrv

Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses monoordxrv.1 φNM
monoordxrv.2 φkMNFk*
monoordxrv.3 φkMN1FkFk+1
Assertion monoordxrv φFMFN

Proof

Step Hyp Ref Expression
1 monoordxrv.1 φNM
2 monoordxrv.2 φkMNFk*
3 monoordxrv.3 φkMN1FkFk+1
4 eluzfz2 NMNMN
5 1 4 syl φNMN
6 eleq1 x=MxMNMMN
7 fveq2 x=MFx=FM
8 7 breq2d x=MFMFxFMFM
9 6 8 imbi12d x=MxMNFMFxMMNFMFM
10 9 imbi2d x=MφxMNFMFxφMMNFMFM
11 eleq1 x=nxMNnMN
12 fveq2 x=nFx=Fn
13 12 breq2d x=nFMFxFMFn
14 11 13 imbi12d x=nxMNFMFxnMNFMFn
15 14 imbi2d x=nφxMNFMFxφnMNFMFn
16 eleq1 x=n+1xMNn+1MN
17 fveq2 x=n+1Fx=Fn+1
18 17 breq2d x=n+1FMFxFMFn+1
19 16 18 imbi12d x=n+1xMNFMFxn+1MNFMFn+1
20 19 imbi2d x=n+1φxMNFMFxφn+1MNFMFn+1
21 eleq1 x=NxMNNMN
22 fveq2 x=NFx=FN
23 22 breq2d x=NFMFxFMFN
24 21 23 imbi12d x=NxMNFMFxNMNFMFN
25 24 imbi2d x=NφxMNFMFxφNMNFMFN
26 eluzfz1 NMMMN
27 1 26 syl φMMN
28 2 ralrimiva φkMNFk*
29 fveq2 k=MFk=FM
30 29 eleq1d k=MFk*FM*
31 30 rspcv MMNkMNFk*FM*
32 27 28 31 sylc φFM*
33 32 xrleidd φFMFM
34 33 a1d φMMNFMFM
35 34 a1i MφMMNFMFM
36 simprl φnMn+1MNnM
37 simprr φnMn+1MNn+1MN
38 peano2fzr nMn+1MNnMN
39 36 37 38 syl2anc φnMn+1MNnMN
40 39 expr φnMn+1MNnMN
41 40 imim1d φnMnMNFMFnn+1MNFMFn
42 eluzelz nMn
43 36 42 syl φnMn+1MNn
44 elfzuz3 n+1MNNn+1
45 37 44 syl φnMn+1MNNn+1
46 eluzp1m1 nNn+1N1n
47 43 45 46 syl2anc φnMn+1MNN1n
48 elfzuzb nMN1nMN1n
49 36 47 48 sylanbrc φnMn+1MNnMN1
50 3 ralrimiva φkMN1FkFk+1
51 50 adantr φnMn+1MNkMN1FkFk+1
52 fveq2 k=nFk=Fn
53 fvoveq1 k=nFk+1=Fn+1
54 52 53 breq12d k=nFkFk+1FnFn+1
55 54 rspcv nMN1kMN1FkFk+1FnFn+1
56 49 51 55 sylc φnMn+1MNFnFn+1
57 32 adantr φnMn+1MNFM*
58 28 adantr φnMn+1MNkMNFk*
59 52 eleq1d k=nFk*Fn*
60 59 rspcv nMNkMNFk*Fn*
61 39 58 60 sylc φnMn+1MNFn*
62 fveq2 k=n+1Fk=Fn+1
63 62 eleq1d k=n+1Fk*Fn+1*
64 63 rspcv n+1MNkMNFk*Fn+1*
65 37 58 64 sylc φnMn+1MNFn+1*
66 xrletr FM*Fn*Fn+1*FMFnFnFn+1FMFn+1
67 57 61 65 66 syl3anc φnMn+1MNFMFnFnFn+1FMFn+1
68 56 67 mpan2d φnMn+1MNFMFnFMFn+1
69 41 68 animpimp2impd nMφnMNFMFnφn+1MNFMFn+1
70 10 15 20 25 35 69 uzind4 NMφNMNFMFN
71 1 70 mpcom φNMNFMFN
72 5 71 mpd φFMFN