| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolval5lem1.a | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ovolval5lem1.b | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ovolval5lem1.w | ⊢ ( 𝜑  →  𝑊  ∈  ℝ+ ) | 
						
							| 4 |  | ovolval5lem1.c | ⊢ 𝐶  =  { 𝑛  ∈  ℕ  ∣  𝐴  <  𝐵 } | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 6 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ℕ  ∈  V ) | 
						
							| 8 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 10 |  | ioombl | ⊢ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 )  ∈  dom  vol | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 )  ∈  dom  vol ) | 
						
							| 12 | 9 11 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 13 | 5 7 12 | sge0xrclmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ) )  ∈  ℝ* ) | 
						
							| 14 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ∈  ℝ* ) | 
						
							| 16 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 17 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  +∞  ∈  ℝ* ) | 
						
							| 18 |  | volicore | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 19 | 1 2 18 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ℝ ) | 
						
							| 20 | 3 | rpred | ⊢ ( 𝜑  →  𝑊  ∈  ℝ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑊  ∈  ℝ ) | 
						
							| 22 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 23 | 22 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 24 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 25 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 2 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( 𝑛  ∈  ℕ  →  ( 2 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 27 | 26 | nnred | ⊢ ( 𝑛  ∈  ℕ  →  ( 2 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2 ↑ 𝑛 )  ∈  ℝ ) | 
						
							| 29 | 26 | nnne0d | ⊢ ( 𝑛  ∈  ℕ  →  ( 2 ↑ 𝑛 )  ≠  0 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2 ↑ 𝑛 )  ≠  0 ) | 
						
							| 31 | 21 28 30 | redivcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ ) | 
						
							| 32 | 19 31 | readdcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 33 | 32 | rexrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ* ) | 
						
							| 34 | 2 | rexrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐵  ∈  ℝ* ) | 
						
							| 35 |  | icombl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) | 
						
							| 36 | 1 34 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴 [,) 𝐵 )  ∈  dom  vol ) | 
						
							| 37 |  | volge0 | ⊢ ( ( 𝐴 [,) 𝐵 )  ∈  dom  vol  →  0  ≤  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 39 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑊  ∈  ℝ+ ) | 
						
							| 40 | 26 | nnrpd | ⊢ ( 𝑛  ∈  ℕ  →  ( 2 ↑ 𝑛 )  ∈  ℝ+ ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 2 ↑ 𝑛 )  ∈  ℝ+ ) | 
						
							| 42 | 39 41 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ+ ) | 
						
							| 43 | 42 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 44 | 19 31 38 43 | addge0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  0  ≤  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 45 |  | rexr | ⊢ ( ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ* ) | 
						
							| 46 | 16 | a1i | ⊢ ( ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ  →  +∞  ∈  ℝ* ) | 
						
							| 47 |  | ltpnf | ⊢ ( ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  <  +∞ ) | 
						
							| 48 | 45 46 47 | xrltled | ⊢ ( ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  +∞ ) | 
						
							| 49 | 32 48 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  +∞ ) | 
						
							| 50 | 15 17 33 44 49 | eliccxrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 51 | 5 7 50 | sge0xrclmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) )  ∈  ℝ* ) | 
						
							| 52 | 9 36 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 53 | 5 7 52 | sge0xrclmpt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) )  ∈  ℝ* ) | 
						
							| 54 | 20 | rexrd | ⊢ ( 𝜑  →  𝑊  ∈  ℝ* ) | 
						
							| 55 | 53 54 | xaddcld | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) )  +𝑒  𝑊 )  ∈  ℝ* ) | 
						
							| 56 | 1 31 | resubcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 57 |  | volioore | ⊢ ( ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  =  if ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 ,  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ,  0 ) ) | 
						
							| 58 | 56 2 57 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  =  if ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 ,  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ,  0 ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  =  if ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 ,  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ,  0 ) ) | 
						
							| 60 |  | iftrue | ⊢ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵  →  if ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 ,  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ,  0 )  =  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  if ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 ,  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ,  0 )  =  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ) | 
						
							| 62 | 2 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 63 | 1 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 64 | 31 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℂ ) | 
						
							| 65 | 62 63 64 | subsubd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) )  =  ( ( 𝐵  −  𝐴 )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) )  =  ( ( 𝐵  −  𝐴 )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 67 | 59 61 66 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  =  ( ( 𝐵  −  𝐴 )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 68 | 2 1 | resubcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 69 | 1 2 | sublevolico | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐵  −  𝐴 )  ≤  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 70 | 68 19 31 69 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐵  −  𝐴 )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  ( ( 𝐵  −  𝐴 )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 72 | 67 71 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  ≤  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 73 | 58 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  =  if ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 ,  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ,  0 ) ) | 
						
							| 74 |  | iffalse | ⊢ ( ¬  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵  →  if ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 ,  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ,  0 )  =  0 ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  if ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 ,  ( 𝐵  −  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ,  0 )  =  0 ) | 
						
							| 76 | 73 75 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  =  0 ) | 
						
							| 77 | 44 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  0  ≤  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 78 | 76 77 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  ≤  𝐵 )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  ≤  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 79 | 72 78 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) )  ≤  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 80 | 5 7 12 50 79 | sge0lempt | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ) )  ≤  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 81 | 19 31 | rexaddd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +𝑒  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  =  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 82 | 81 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) )  =  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +𝑒  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) | 
						
							| 83 | 82 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +𝑒  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ) | 
						
							| 84 | 83 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +𝑒  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 85 | 31 | rexrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 86 |  | rexr | ⊢ ( ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 87 | 16 | a1i | ⊢ ( ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ  →  +∞  ∈  ℝ* ) | 
						
							| 88 |  | ltpnf | ⊢ ( ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  <  +∞ ) | 
						
							| 89 | 86 87 88 | xrltled | ⊢ ( ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ℝ  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ≤  +∞ ) | 
						
							| 90 | 31 89 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ≤  +∞ ) | 
						
							| 91 | 15 17 85 43 90 | eliccxrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑊  /  ( 2 ↑ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 92 | 5 7 52 91 | sge0xadd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +𝑒  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) ) ) | 
						
							| 93 | 14 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 94 | 16 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 95 | 3 | rpge0d | ⊢ ( 𝜑  →  0  ≤  𝑊 ) | 
						
							| 96 | 20 | ltpnfd | ⊢ ( 𝜑  →  𝑊  <  +∞ ) | 
						
							| 97 | 93 94 54 95 96 | elicod | ⊢ ( 𝜑  →  𝑊  ∈  ( 0 [,) +∞ ) ) | 
						
							| 98 | 97 | sge0ad2en | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) )  =  𝑊 ) | 
						
							| 99 | 98 | oveq2d | ⊢ ( 𝜑  →  ( ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) )  +𝑒  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) )  +𝑒  𝑊 ) ) | 
						
							| 100 | 84 92 99 | 3eqtrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) )  =  ( ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) )  +𝑒  𝑊 ) ) | 
						
							| 101 | 51 100 | xreqled | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( ( vol ‘ ( 𝐴 [,) 𝐵 ) )  +  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) ) )  ≤  ( ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) )  +𝑒  𝑊 ) ) | 
						
							| 102 | 13 51 55 80 101 | xrletrd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐴  −  ( 𝑊  /  ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ) )  ≤  ( ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) )  +𝑒  𝑊 ) ) |