| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolval5lem1.a |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 2 |
|
ovolval5lem1.b |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 3 |
|
ovolval5lem1.w |
⊢ ( 𝜑 → 𝑊 ∈ ℝ+ ) |
| 4 |
|
ovolval5lem1.c |
⊢ 𝐶 = { 𝑛 ∈ ℕ ∣ 𝐴 < 𝐵 } |
| 5 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 6 |
|
nnex |
⊢ ℕ ∈ V |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 8 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
| 9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
| 10 |
|
ioombl |
⊢ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ∈ dom vol |
| 11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ∈ dom vol ) |
| 12 |
9 11
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 13 |
5 7 12
|
sge0xrclmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ) ) ∈ ℝ* ) |
| 14 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ∈ ℝ* ) |
| 16 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → +∞ ∈ ℝ* ) |
| 18 |
|
volicore |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ ) |
| 19 |
1 2 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ℝ ) |
| 20 |
3
|
rpred |
⊢ ( 𝜑 → 𝑊 ∈ ℝ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ ℝ ) |
| 22 |
|
2nn |
⊢ 2 ∈ ℕ |
| 23 |
22
|
a1i |
⊢ ( 𝑛 ∈ ℕ → 2 ∈ ℕ ) |
| 24 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 25 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 26 |
23 24 25
|
syl2anc |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 27 |
26
|
nnred |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 29 |
26
|
nnne0d |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 31 |
21 28 30
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 32 |
19 31
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 33 |
32
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* ) |
| 34 |
2
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℝ* ) |
| 35 |
|
icombl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
| 36 |
1 34 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
| 37 |
|
volge0 |
⊢ ( ( 𝐴 [,) 𝐵 ) ∈ dom vol → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
| 39 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑊 ∈ ℝ+ ) |
| 40 |
26
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
| 42 |
39 41
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 43 |
42
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) |
| 44 |
19 31 38 43
|
addge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 45 |
|
rexr |
⊢ ( ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* ) |
| 46 |
16
|
a1i |
⊢ ( ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ → +∞ ∈ ℝ* ) |
| 47 |
|
ltpnf |
⊢ ( ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) < +∞ ) |
| 48 |
45 46 47
|
xrltled |
⊢ ( ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ +∞ ) |
| 49 |
32 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ +∞ ) |
| 50 |
15 17 33 44 49
|
eliccxrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 51 |
5 7 50
|
sge0xrclmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ ℝ* ) |
| 52 |
9 36
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 53 |
5 7 52
|
sge0xrclmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) ) ∈ ℝ* ) |
| 54 |
20
|
rexrd |
⊢ ( 𝜑 → 𝑊 ∈ ℝ* ) |
| 55 |
53 54
|
xaddcld |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) ) +𝑒 𝑊 ) ∈ ℝ* ) |
| 56 |
1 31
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 57 |
|
volioore |
⊢ ( ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) = if ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 , ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) , 0 ) ) |
| 58 |
56 2 57
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) = if ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 , ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) , 0 ) ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) = if ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 , ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) , 0 ) ) |
| 60 |
|
iftrue |
⊢ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 → if ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 , ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) , 0 ) = ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → if ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 , ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) , 0 ) = ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 62 |
2
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 63 |
1
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 64 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
| 65 |
62 63 64
|
subsubd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) = ( ( 𝐵 − 𝐴 ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) = ( ( 𝐵 − 𝐴 ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 67 |
59 61 66
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 68 |
2 1
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 69 |
1 2
|
sublevolico |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 − 𝐴 ) ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
| 70 |
68 19 31 69
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐵 − 𝐴 ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → ( ( 𝐵 − 𝐴 ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 72 |
67 71
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ≤ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 73 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) = if ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 , ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) , 0 ) ) |
| 74 |
|
iffalse |
⊢ ( ¬ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 → if ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 , ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) , 0 ) = 0 ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → if ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 , ( 𝐵 − ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) , 0 ) = 0 ) |
| 76 |
73 75
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) = 0 ) |
| 77 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → 0 ≤ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 78 |
76 77
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ≤ 𝐵 ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ≤ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 79 |
72 78
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ≤ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 80 |
5 7 12 50 79
|
sge0lempt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 81 |
19 31
|
rexaddd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) +𝑒 ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) = ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 82 |
81
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) = ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) +𝑒 ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) |
| 83 |
82
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) +𝑒 ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 84 |
83
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) +𝑒 ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 85 |
31
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) |
| 86 |
|
rexr |
⊢ ( ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) |
| 87 |
16
|
a1i |
⊢ ( ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℝ → +∞ ∈ ℝ* ) |
| 88 |
|
ltpnf |
⊢ ( ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( 𝑊 / ( 2 ↑ 𝑛 ) ) < +∞ ) |
| 89 |
86 87 88
|
xrltled |
⊢ ( ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( 𝑊 / ( 2 ↑ 𝑛 ) ) ≤ +∞ ) |
| 90 |
31 89
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑊 / ( 2 ↑ 𝑛 ) ) ≤ +∞ ) |
| 91 |
15 17 85 43 90
|
eliccxrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑊 / ( 2 ↑ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
| 92 |
5 7 52 91
|
sge0xadd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) +𝑒 ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 93 |
14
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 94 |
16
|
a1i |
⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
| 95 |
3
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ 𝑊 ) |
| 96 |
20
|
ltpnfd |
⊢ ( 𝜑 → 𝑊 < +∞ ) |
| 97 |
93 94 54 95 96
|
elicod |
⊢ ( 𝜑 → 𝑊 ∈ ( 0 [,) +∞ ) ) |
| 98 |
97
|
sge0ad2en |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) = 𝑊 ) |
| 99 |
98
|
oveq2d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) ) +𝑒 𝑊 ) ) |
| 100 |
84 92 99
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) = ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) ) +𝑒 𝑊 ) ) |
| 101 |
51 100
|
xreqled |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( vol ‘ ( 𝐴 [,) 𝐵 ) ) + ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) ) ) ≤ ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) ) +𝑒 𝑊 ) ) |
| 102 |
13 51 55 80 101
|
xrletrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝐴 − ( 𝑊 / ( 2 ↑ 𝑛 ) ) ) (,) 𝐵 ) ) ) ) ≤ ( ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) ) +𝑒 𝑊 ) ) |