| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ss | ⊢ ∅  ⊆  𝐵 | 
						
							| 2 |  | sspsstr | ⊢ ( ( ∅  ⊆  𝐵  ∧  𝐵  ⊊  𝐴 )  →  ∅  ⊊  𝐴 ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐵  ⊊  𝐴  →  ∅  ⊊  𝐴 ) | 
						
							| 4 |  | 0pss | ⊢ ( ∅  ⊊  𝐴  ↔  𝐴  ≠  ∅ ) | 
						
							| 5 |  | df-ne | ⊢ ( 𝐴  ≠  ∅  ↔  ¬  𝐴  =  ∅ ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ∅  ⊊  𝐴  ↔  ¬  𝐴  =  ∅ ) | 
						
							| 7 | 3 6 | sylib | ⊢ ( 𝐵  ⊊  𝐴  →  ¬  𝐴  =  ∅ ) | 
						
							| 8 |  | nn0suc | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  ω 𝐴  =  suc  𝑥 ) ) | 
						
							| 9 | 8 | orcanai | ⊢ ( ( 𝐴  ∈  ω  ∧  ¬  𝐴  =  ∅ )  →  ∃ 𝑥  ∈  ω 𝐴  =  suc  𝑥 ) | 
						
							| 10 | 7 9 | sylan2 | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  ∃ 𝑥  ∈  ω 𝐴  =  suc  𝑥 ) | 
						
							| 11 |  | pssnel | ⊢ ( 𝐵  ⊊  suc  𝑥  →  ∃ 𝑦 ( 𝑦  ∈  suc  𝑥  ∧  ¬  𝑦  ∈  𝐵 ) ) | 
						
							| 12 |  | pssss | ⊢ ( 𝐵  ⊊  suc  𝑥  →  𝐵  ⊆  suc  𝑥 ) | 
						
							| 13 |  | ssdif | ⊢ ( 𝐵  ⊆  suc  𝑥  →  ( 𝐵  ∖  { 𝑦 } )  ⊆  ( suc  𝑥  ∖  { 𝑦 } ) ) | 
						
							| 14 |  | disjsn | ⊢ ( ( 𝐵  ∩  { 𝑦 } )  =  ∅  ↔  ¬  𝑦  ∈  𝐵 ) | 
						
							| 15 |  | disj3 | ⊢ ( ( 𝐵  ∩  { 𝑦 } )  =  ∅  ↔  𝐵  =  ( 𝐵  ∖  { 𝑦 } ) ) | 
						
							| 16 | 14 15 | bitr3i | ⊢ ( ¬  𝑦  ∈  𝐵  ↔  𝐵  =  ( 𝐵  ∖  { 𝑦 } ) ) | 
						
							| 17 |  | sseq1 | ⊢ ( 𝐵  =  ( 𝐵  ∖  { 𝑦 } )  →  ( 𝐵  ⊆  ( suc  𝑥  ∖  { 𝑦 } )  ↔  ( 𝐵  ∖  { 𝑦 } )  ⊆  ( suc  𝑥  ∖  { 𝑦 } ) ) ) | 
						
							| 18 | 16 17 | sylbi | ⊢ ( ¬  𝑦  ∈  𝐵  →  ( 𝐵  ⊆  ( suc  𝑥  ∖  { 𝑦 } )  ↔  ( 𝐵  ∖  { 𝑦 } )  ⊆  ( suc  𝑥  ∖  { 𝑦 } ) ) ) | 
						
							| 19 | 13 18 | imbitrrid | ⊢ ( ¬  𝑦  ∈  𝐵  →  ( 𝐵  ⊆  suc  𝑥  →  𝐵  ⊆  ( suc  𝑥  ∖  { 𝑦 } ) ) ) | 
						
							| 20 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 21 | 20 | sucex | ⊢ suc  𝑥  ∈  V | 
						
							| 22 | 21 | difexi | ⊢ ( suc  𝑥  ∖  { 𝑦 } )  ∈  V | 
						
							| 23 |  | ssdomg | ⊢ ( ( suc  𝑥  ∖  { 𝑦 } )  ∈  V  →  ( 𝐵  ⊆  ( suc  𝑥  ∖  { 𝑦 } )  →  𝐵  ≼  ( suc  𝑥  ∖  { 𝑦 } ) ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( 𝐵  ⊆  ( suc  𝑥  ∖  { 𝑦 } )  →  𝐵  ≼  ( suc  𝑥  ∖  { 𝑦 } ) ) | 
						
							| 25 | 12 19 24 | syl56 | ⊢ ( ¬  𝑦  ∈  𝐵  →  ( 𝐵  ⊊  suc  𝑥  →  𝐵  ≼  ( suc  𝑥  ∖  { 𝑦 } ) ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ¬  𝑦  ∈  𝐵  ∧  𝐵  ⊊  suc  𝑥 )  →  𝐵  ≼  ( suc  𝑥  ∖  { 𝑦 } ) ) | 
						
							| 27 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 28 | 20 27 | phplem3OLD | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  suc  𝑥 )  →  𝑥  ≈  ( suc  𝑥  ∖  { 𝑦 } ) ) | 
						
							| 29 | 28 | ensymd | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  suc  𝑥 )  →  ( suc  𝑥  ∖  { 𝑦 } )  ≈  𝑥 ) | 
						
							| 30 |  | domentr | ⊢ ( ( 𝐵  ≼  ( suc  𝑥  ∖  { 𝑦 } )  ∧  ( suc  𝑥  ∖  { 𝑦 } )  ≈  𝑥 )  →  𝐵  ≼  𝑥 ) | 
						
							| 31 | 26 29 30 | syl2an | ⊢ ( ( ( ¬  𝑦  ∈  𝐵  ∧  𝐵  ⊊  suc  𝑥 )  ∧  ( 𝑥  ∈  ω  ∧  𝑦  ∈  suc  𝑥 ) )  →  𝐵  ≼  𝑥 ) | 
						
							| 32 | 31 | exp43 | ⊢ ( ¬  𝑦  ∈  𝐵  →  ( 𝐵  ⊊  suc  𝑥  →  ( 𝑥  ∈  ω  →  ( 𝑦  ∈  suc  𝑥  →  𝐵  ≼  𝑥 ) ) ) ) | 
						
							| 33 | 32 | com4r | ⊢ ( 𝑦  ∈  suc  𝑥  →  ( ¬  𝑦  ∈  𝐵  →  ( 𝐵  ⊊  suc  𝑥  →  ( 𝑥  ∈  ω  →  𝐵  ≼  𝑥 ) ) ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( 𝑦  ∈  suc  𝑥  ∧  ¬  𝑦  ∈  𝐵 )  →  ( 𝐵  ⊊  suc  𝑥  →  ( 𝑥  ∈  ω  →  𝐵  ≼  𝑥 ) ) ) | 
						
							| 35 | 34 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  suc  𝑥  ∧  ¬  𝑦  ∈  𝐵 )  →  ( 𝐵  ⊊  suc  𝑥  →  ( 𝑥  ∈  ω  →  𝐵  ≼  𝑥 ) ) ) | 
						
							| 36 | 11 35 | mpcom | ⊢ ( 𝐵  ⊊  suc  𝑥  →  ( 𝑥  ∈  ω  →  𝐵  ≼  𝑥 ) ) | 
						
							| 37 |  | endomtr | ⊢ ( ( suc  𝑥  ≈  𝐵  ∧  𝐵  ≼  𝑥 )  →  suc  𝑥  ≼  𝑥 ) | 
						
							| 38 |  | sssucid | ⊢ 𝑥  ⊆  suc  𝑥 | 
						
							| 39 |  | ssdomg | ⊢ ( suc  𝑥  ∈  V  →  ( 𝑥  ⊆  suc  𝑥  →  𝑥  ≼  suc  𝑥 ) ) | 
						
							| 40 | 21 38 39 | mp2 | ⊢ 𝑥  ≼  suc  𝑥 | 
						
							| 41 |  | sbth | ⊢ ( ( suc  𝑥  ≼  𝑥  ∧  𝑥  ≼  suc  𝑥 )  →  suc  𝑥  ≈  𝑥 ) | 
						
							| 42 | 37 40 41 | sylancl | ⊢ ( ( suc  𝑥  ≈  𝐵  ∧  𝐵  ≼  𝑥 )  →  suc  𝑥  ≈  𝑥 ) | 
						
							| 43 | 42 | expcom | ⊢ ( 𝐵  ≼  𝑥  →  ( suc  𝑥  ≈  𝐵  →  suc  𝑥  ≈  𝑥 ) ) | 
						
							| 44 |  | peano2b | ⊢ ( 𝑥  ∈  ω  ↔  suc  𝑥  ∈  ω ) | 
						
							| 45 |  | nnord | ⊢ ( suc  𝑥  ∈  ω  →  Ord  suc  𝑥 ) | 
						
							| 46 | 44 45 | sylbi | ⊢ ( 𝑥  ∈  ω  →  Ord  suc  𝑥 ) | 
						
							| 47 | 20 | sucid | ⊢ 𝑥  ∈  suc  𝑥 | 
						
							| 48 |  | nordeq | ⊢ ( ( Ord  suc  𝑥  ∧  𝑥  ∈  suc  𝑥 )  →  suc  𝑥  ≠  𝑥 ) | 
						
							| 49 | 46 47 48 | sylancl | ⊢ ( 𝑥  ∈  ω  →  suc  𝑥  ≠  𝑥 ) | 
						
							| 50 |  | nneneqOLD | ⊢ ( ( suc  𝑥  ∈  ω  ∧  𝑥  ∈  ω )  →  ( suc  𝑥  ≈  𝑥  ↔  suc  𝑥  =  𝑥 ) ) | 
						
							| 51 | 44 50 | sylanb | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑥  ∈  ω )  →  ( suc  𝑥  ≈  𝑥  ↔  suc  𝑥  =  𝑥 ) ) | 
						
							| 52 | 51 | anidms | ⊢ ( 𝑥  ∈  ω  →  ( suc  𝑥  ≈  𝑥  ↔  suc  𝑥  =  𝑥 ) ) | 
						
							| 53 | 52 | necon3bbid | ⊢ ( 𝑥  ∈  ω  →  ( ¬  suc  𝑥  ≈  𝑥  ↔  suc  𝑥  ≠  𝑥 ) ) | 
						
							| 54 | 49 53 | mpbird | ⊢ ( 𝑥  ∈  ω  →  ¬  suc  𝑥  ≈  𝑥 ) | 
						
							| 55 | 43 54 | nsyli | ⊢ ( 𝐵  ≼  𝑥  →  ( 𝑥  ∈  ω  →  ¬  suc  𝑥  ≈  𝐵 ) ) | 
						
							| 56 | 36 55 | syli | ⊢ ( 𝐵  ⊊  suc  𝑥  →  ( 𝑥  ∈  ω  →  ¬  suc  𝑥  ≈  𝐵 ) ) | 
						
							| 57 | 56 | com12 | ⊢ ( 𝑥  ∈  ω  →  ( 𝐵  ⊊  suc  𝑥  →  ¬  suc  𝑥  ≈  𝐵 ) ) | 
						
							| 58 |  | psseq2 | ⊢ ( 𝐴  =  suc  𝑥  →  ( 𝐵  ⊊  𝐴  ↔  𝐵  ⊊  suc  𝑥 ) ) | 
						
							| 59 |  | breq1 | ⊢ ( 𝐴  =  suc  𝑥  →  ( 𝐴  ≈  𝐵  ↔  suc  𝑥  ≈  𝐵 ) ) | 
						
							| 60 | 59 | notbid | ⊢ ( 𝐴  =  suc  𝑥  →  ( ¬  𝐴  ≈  𝐵  ↔  ¬  suc  𝑥  ≈  𝐵 ) ) | 
						
							| 61 | 58 60 | imbi12d | ⊢ ( 𝐴  =  suc  𝑥  →  ( ( 𝐵  ⊊  𝐴  →  ¬  𝐴  ≈  𝐵 )  ↔  ( 𝐵  ⊊  suc  𝑥  →  ¬  suc  𝑥  ≈  𝐵 ) ) ) | 
						
							| 62 | 57 61 | syl5ibrcom | ⊢ ( 𝑥  ∈  ω  →  ( 𝐴  =  suc  𝑥  →  ( 𝐵  ⊊  𝐴  →  ¬  𝐴  ≈  𝐵 ) ) ) | 
						
							| 63 | 62 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  ω 𝐴  =  suc  𝑥  →  ( 𝐵  ⊊  𝐴  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 64 | 10 63 | syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  ( 𝐵  ⊊  𝐴  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 65 | 64 | ex | ⊢ ( 𝐴  ∈  ω  →  ( 𝐵  ⊊  𝐴  →  ( 𝐵  ⊊  𝐴  →  ¬  𝐴  ≈  𝐵 ) ) ) | 
						
							| 66 | 65 | pm2.43d | ⊢ ( 𝐴  ∈  ω  →  ( 𝐵  ⊊  𝐴  →  ¬  𝐴  ≈  𝐵 ) ) | 
						
							| 67 | 66 | imp | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ⊊  𝐴 )  →  ¬  𝐴  ≈  𝐵 ) |