Step |
Hyp |
Ref |
Expression |
1 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
2 |
|
sspsstr |
⊢ ( ( ∅ ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴 ) → ∅ ⊊ 𝐴 ) |
3 |
1 2
|
mpan |
⊢ ( 𝐵 ⊊ 𝐴 → ∅ ⊊ 𝐴 ) |
4 |
|
0pss |
⊢ ( ∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅ ) |
5 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
6 |
4 5
|
bitri |
⊢ ( ∅ ⊊ 𝐴 ↔ ¬ 𝐴 = ∅ ) |
7 |
3 6
|
sylib |
⊢ ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 = ∅ ) |
8 |
|
nn0suc |
⊢ ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
9 |
8
|
orcanai |
⊢ ( ( 𝐴 ∈ ω ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) |
10 |
7 9
|
sylan2 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) |
11 |
|
pssnel |
⊢ ( 𝐵 ⊊ suc 𝑥 → ∃ 𝑦 ( 𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
12 |
|
pssss |
⊢ ( 𝐵 ⊊ suc 𝑥 → 𝐵 ⊆ suc 𝑥 ) |
13 |
|
ssdif |
⊢ ( 𝐵 ⊆ suc 𝑥 → ( 𝐵 ∖ { 𝑦 } ) ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) |
14 |
|
disjsn |
⊢ ( ( 𝐵 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝐵 ) |
15 |
|
disj3 |
⊢ ( ( 𝐵 ∩ { 𝑦 } ) = ∅ ↔ 𝐵 = ( 𝐵 ∖ { 𝑦 } ) ) |
16 |
14 15
|
bitr3i |
⊢ ( ¬ 𝑦 ∈ 𝐵 ↔ 𝐵 = ( 𝐵 ∖ { 𝑦 } ) ) |
17 |
|
sseq1 |
⊢ ( 𝐵 = ( 𝐵 ∖ { 𝑦 } ) → ( 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ↔ ( 𝐵 ∖ { 𝑦 } ) ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
18 |
16 17
|
sylbi |
⊢ ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ↔ ( 𝐵 ∖ { 𝑦 } ) ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
19 |
13 18
|
syl5ibr |
⊢ ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊆ suc 𝑥 → 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
20 |
|
vex |
⊢ 𝑥 ∈ V |
21 |
20
|
sucex |
⊢ suc 𝑥 ∈ V |
22 |
21
|
difexi |
⊢ ( suc 𝑥 ∖ { 𝑦 } ) ∈ V |
23 |
|
ssdomg |
⊢ ( ( suc 𝑥 ∖ { 𝑦 } ) ∈ V → ( 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
24 |
22 23
|
ax-mp |
⊢ ( 𝐵 ⊆ ( suc 𝑥 ∖ { 𝑦 } ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) |
25 |
12 19 24
|
syl56 |
⊢ ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊊ suc 𝑥 → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) ) |
26 |
25
|
imp |
⊢ ( ( ¬ 𝑦 ∈ 𝐵 ∧ 𝐵 ⊊ suc 𝑥 ) → 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ) |
27 |
|
vex |
⊢ 𝑦 ∈ V |
28 |
20 27
|
phplem3OLD |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) → 𝑥 ≈ ( suc 𝑥 ∖ { 𝑦 } ) ) |
29 |
28
|
ensymd |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) → ( suc 𝑥 ∖ { 𝑦 } ) ≈ 𝑥 ) |
30 |
|
domentr |
⊢ ( ( 𝐵 ≼ ( suc 𝑥 ∖ { 𝑦 } ) ∧ ( suc 𝑥 ∖ { 𝑦 } ) ≈ 𝑥 ) → 𝐵 ≼ 𝑥 ) |
31 |
26 29 30
|
syl2an |
⊢ ( ( ( ¬ 𝑦 ∈ 𝐵 ∧ 𝐵 ⊊ suc 𝑥 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ suc 𝑥 ) ) → 𝐵 ≼ 𝑥 ) |
32 |
31
|
exp43 |
⊢ ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → ( 𝑦 ∈ suc 𝑥 → 𝐵 ≼ 𝑥 ) ) ) ) |
33 |
32
|
com4r |
⊢ ( 𝑦 ∈ suc 𝑥 → ( ¬ 𝑦 ∈ 𝐵 → ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → 𝐵 ≼ 𝑥 ) ) ) ) |
34 |
33
|
imp |
⊢ ( ( 𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → 𝐵 ≼ 𝑥 ) ) ) |
35 |
34
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ suc 𝑥 ∧ ¬ 𝑦 ∈ 𝐵 ) → ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → 𝐵 ≼ 𝑥 ) ) ) |
36 |
11 35
|
mpcom |
⊢ ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → 𝐵 ≼ 𝑥 ) ) |
37 |
|
endomtr |
⊢ ( ( suc 𝑥 ≈ 𝐵 ∧ 𝐵 ≼ 𝑥 ) → suc 𝑥 ≼ 𝑥 ) |
38 |
|
sssucid |
⊢ 𝑥 ⊆ suc 𝑥 |
39 |
|
ssdomg |
⊢ ( suc 𝑥 ∈ V → ( 𝑥 ⊆ suc 𝑥 → 𝑥 ≼ suc 𝑥 ) ) |
40 |
21 38 39
|
mp2 |
⊢ 𝑥 ≼ suc 𝑥 |
41 |
|
sbth |
⊢ ( ( suc 𝑥 ≼ 𝑥 ∧ 𝑥 ≼ suc 𝑥 ) → suc 𝑥 ≈ 𝑥 ) |
42 |
37 40 41
|
sylancl |
⊢ ( ( suc 𝑥 ≈ 𝐵 ∧ 𝐵 ≼ 𝑥 ) → suc 𝑥 ≈ 𝑥 ) |
43 |
42
|
expcom |
⊢ ( 𝐵 ≼ 𝑥 → ( suc 𝑥 ≈ 𝐵 → suc 𝑥 ≈ 𝑥 ) ) |
44 |
|
peano2b |
⊢ ( 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) |
45 |
|
nnord |
⊢ ( suc 𝑥 ∈ ω → Ord suc 𝑥 ) |
46 |
44 45
|
sylbi |
⊢ ( 𝑥 ∈ ω → Ord suc 𝑥 ) |
47 |
20
|
sucid |
⊢ 𝑥 ∈ suc 𝑥 |
48 |
|
nordeq |
⊢ ( ( Ord suc 𝑥 ∧ 𝑥 ∈ suc 𝑥 ) → suc 𝑥 ≠ 𝑥 ) |
49 |
46 47 48
|
sylancl |
⊢ ( 𝑥 ∈ ω → suc 𝑥 ≠ 𝑥 ) |
50 |
|
nneneqOLD |
⊢ ( ( suc 𝑥 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥 ) ) |
51 |
44 50
|
sylanb |
⊢ ( ( 𝑥 ∈ ω ∧ 𝑥 ∈ ω ) → ( suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥 ) ) |
52 |
51
|
anidms |
⊢ ( 𝑥 ∈ ω → ( suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 = 𝑥 ) ) |
53 |
52
|
necon3bbid |
⊢ ( 𝑥 ∈ ω → ( ¬ suc 𝑥 ≈ 𝑥 ↔ suc 𝑥 ≠ 𝑥 ) ) |
54 |
49 53
|
mpbird |
⊢ ( 𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝑥 ) |
55 |
43 54
|
nsyli |
⊢ ( 𝐵 ≼ 𝑥 → ( 𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝐵 ) ) |
56 |
36 55
|
syli |
⊢ ( 𝐵 ⊊ suc 𝑥 → ( 𝑥 ∈ ω → ¬ suc 𝑥 ≈ 𝐵 ) ) |
57 |
56
|
com12 |
⊢ ( 𝑥 ∈ ω → ( 𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥 ≈ 𝐵 ) ) |
58 |
|
psseq2 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐵 ⊊ 𝐴 ↔ 𝐵 ⊊ suc 𝑥 ) ) |
59 |
|
breq1 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ≈ 𝐵 ↔ suc 𝑥 ≈ 𝐵 ) ) |
60 |
59
|
notbid |
⊢ ( 𝐴 = suc 𝑥 → ( ¬ 𝐴 ≈ 𝐵 ↔ ¬ suc 𝑥 ≈ 𝐵 ) ) |
61 |
58 60
|
imbi12d |
⊢ ( 𝐴 = suc 𝑥 → ( ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ↔ ( 𝐵 ⊊ suc 𝑥 → ¬ suc 𝑥 ≈ 𝐵 ) ) ) |
62 |
57 61
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ω → ( 𝐴 = suc 𝑥 → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
63 |
62
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) |
64 |
10 63
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) |
65 |
64
|
ex |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) ) |
66 |
65
|
pm2.43d |
⊢ ( 𝐴 ∈ ω → ( 𝐵 ⊊ 𝐴 → ¬ 𝐴 ≈ 𝐵 ) ) |
67 |
66
|
imp |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴 ) → ¬ 𝐴 ≈ 𝐵 ) |