| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsrngd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdsrngd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 3 |
|
prdsrngd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
prdsrngd.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Rng ) |
| 5 |
|
rngabl |
⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Abel ) |
| 6 |
5
|
ssriv |
⊢ Rng ⊆ Abel |
| 7 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ Rng ∧ Rng ⊆ Abel ) → 𝑅 : 𝐼 ⟶ Abel ) |
| 8 |
4 6 7
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Abel ) |
| 9 |
1 2 3 8
|
prdsabld |
⊢ ( 𝜑 → 𝑌 ∈ Abel ) |
| 10 |
|
eqid |
⊢ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) |
| 11 |
|
rngmgpf |
⊢ ( mulGrp ↾ Rng ) : Rng ⟶ Smgrp |
| 12 |
|
fco2 |
⊢ ( ( ( mulGrp ↾ Rng ) : Rng ⟶ Smgrp ∧ 𝑅 : 𝐼 ⟶ Rng ) → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Smgrp ) |
| 13 |
11 4 12
|
sylancr |
⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Smgrp ) |
| 14 |
10 2 3 13
|
prdssgrpd |
⊢ ( 𝜑 → ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ Smgrp ) |
| 15 |
|
fvexd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑌 ) ∈ V ) |
| 16 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ V ) |
| 17 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
| 18 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
| 19 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 20 |
1 18 10 2 3 19
|
prdsmgp |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) ) |
| 21 |
20
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 22 |
20
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 23 |
22
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) 𝑦 ) ) |
| 24 |
15 16 17 21 23
|
sgrppropd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑌 ) ∈ Smgrp ↔ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ Smgrp ) ) |
| 25 |
14 24
|
mpbird |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑌 ) ∈ Smgrp ) |
| 26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Rng ) |
| 27 |
26
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑤 ) ∈ Rng ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑆 ∈ 𝑉 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 31 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝐼 ∈ 𝑊 ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 33 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 Fn 𝐼 ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 35 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) |
| 36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑤 ∈ 𝐼 ) |
| 37 |
1 28 30 32 34 35 36
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 38 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑌 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑦 ∈ ( Base ‘ 𝑌 ) ) |
| 40 |
1 28 30 32 34 39 36
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 41 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑧 ∈ ( Base ‘ 𝑌 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → 𝑧 ∈ ( Base ‘ 𝑌 ) ) |
| 43 |
1 28 30 32 34 42 36
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 44 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) |
| 45 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) |
| 46 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) = ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) |
| 47 |
44 45 46
|
rngdi |
⊢ ( ( ( 𝑅 ‘ 𝑤 ) ∈ Rng ∧ ( ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 48 |
27 37 40 43 47
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 49 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 50 |
1 28 30 32 34 39 42 49 36
|
prdsplusgfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 51 |
50
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 52 |
|
eqid |
⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) |
| 53 |
1 28 30 32 34 35 39 52 36
|
prdsmulrfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) |
| 54 |
1 28 30 32 34 35 42 52 36
|
prdsmulrfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 55 |
53 54
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 56 |
48 51 55
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) |
| 57 |
56
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑤 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 58 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑌 ) ) |
| 59 |
|
rnggrp |
⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Grp ) |
| 60 |
59
|
grpmndd |
⊢ ( 𝑥 ∈ Rng → 𝑥 ∈ Mnd ) |
| 61 |
60
|
ssriv |
⊢ Rng ⊆ Mnd |
| 62 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ Rng ∧ Rng ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 63 |
4 61 62
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 65 |
1 28 49 29 31 64 38 41
|
prdsplusgcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 66 |
1 28 29 31 33 58 65 52
|
prdsmulrval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 67 |
1 28 52 29 31 26 58 38
|
prdsmulrngcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ∈ ( Base ‘ 𝑌 ) ) |
| 68 |
1 28 52 29 31 26 58 41
|
prdsmulrngcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 69 |
1 28 29 31 33 67 68 49
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 70 |
57 66 69
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ) |
| 71 |
44 45 46
|
rngdir |
⊢ ( ( ( 𝑅 ‘ 𝑤 ) ∈ Rng ∧ ( ( 𝑥 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ∧ ( 𝑧 ‘ 𝑤 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) → ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 72 |
27 37 40 43 71
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 73 |
1 28 30 32 34 35 39 49 36
|
prdsplusgfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) = ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ) |
| 74 |
73
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑦 ‘ 𝑤 ) ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 75 |
1 28 30 32 34 39 42 52 36
|
prdsmulrfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) = ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) |
| 76 |
54 75
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) = ( ( ( 𝑥 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 77 |
72 74 76
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) ∧ 𝑤 ∈ 𝐼 ) → ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) = ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) |
| 78 |
77
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 79 |
1 28 49 29 31 64 58 38
|
prdsplusgcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ∈ ( Base ‘ 𝑌 ) ) |
| 80 |
1 28 29 31 33 79 41 52
|
prdsmulrval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ‘ 𝑤 ) ( .r ‘ ( 𝑅 ‘ 𝑤 ) ) ( 𝑧 ‘ 𝑤 ) ) ) ) |
| 81 |
1 28 52 29 31 26 38 41
|
prdsmulrngcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ∈ ( Base ‘ 𝑌 ) ) |
| 82 |
1 28 29 31 33 68 81 49
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) = ( 𝑤 ∈ 𝐼 ↦ ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ( +g ‘ ( 𝑅 ‘ 𝑤 ) ) ( ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ‘ 𝑤 ) ) ) ) |
| 83 |
78 80 82
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) |
| 84 |
70 83
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) |
| 85 |
84
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ∀ 𝑧 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) |
| 86 |
28 18 49 52
|
isrng |
⊢ ( 𝑌 ∈ Rng ↔ ( 𝑌 ∈ Abel ∧ ( mulGrp ‘ 𝑌 ) ∈ Smgrp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ∀ 𝑧 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) ( 𝑦 ( +g ‘ 𝑌 ) 𝑧 ) ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ( +g ‘ 𝑌 ) ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ( .r ‘ 𝑌 ) 𝑧 ) = ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑧 ) ( +g ‘ 𝑌 ) ( 𝑦 ( .r ‘ 𝑌 ) 𝑧 ) ) ) ) ) |
| 87 |
9 25 85 86
|
syl3anbrc |
⊢ ( 𝜑 → 𝑌 ∈ Rng ) |