| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ) |
| 2 |
|
fvexd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ V ) |
| 3 |
|
elfvex |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝑋 ∈ V ) |
| 5 |
|
simpr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ 𝑋 ) |
| 6 |
4 5
|
ssexd |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ∈ V ) |
| 7 |
|
elrest |
⊢ ( ( ( unifTop ‘ 𝑈 ) ∈ V ∧ 𝐴 ∈ V ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 8 |
2 6 7
|
syl2anc |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ↔ ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ) |
| 9 |
8
|
biimpa |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
| 10 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝐴 ) ⊆ 𝐴 |
| 11 |
|
sseq1 |
⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → ( 𝑏 ⊆ 𝐴 ↔ ( 𝑎 ∩ 𝐴 ) ⊆ 𝐴 ) ) |
| 12 |
10 11
|
mpbiri |
⊢ ( 𝑏 = ( 𝑎 ∩ 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
| 13 |
12
|
rexlimivw |
⊢ ( ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) → 𝑏 ⊆ 𝐴 ) |
| 14 |
9 13
|
syl |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → 𝑏 ⊆ 𝐴 ) |
| 15 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 17 |
6
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝐴 ∈ V ) |
| 18 |
17 17
|
xpexd |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
| 19 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑢 ∈ 𝑈 ) |
| 20 |
|
elrestr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) |
| 21 |
16 18 19 20
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) |
| 22 |
|
inss1 |
⊢ ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑢 |
| 23 |
|
imass1 |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑢 → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑢 “ { 𝑥 } ) ) |
| 24 |
22 23
|
ax-mp |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑢 “ { 𝑥 } ) |
| 25 |
|
sstr |
⊢ ( ( ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑢 “ { 𝑥 } ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) |
| 26 |
24 25
|
mpan |
⊢ ( ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑎 ) |
| 27 |
|
imassrn |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ran ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) |
| 28 |
|
rnin |
⊢ ran ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( ran 𝑢 ∩ ran ( 𝐴 × 𝐴 ) ) |
| 29 |
27 28
|
sstri |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( ran 𝑢 ∩ ran ( 𝐴 × 𝐴 ) ) |
| 30 |
|
inss2 |
⊢ ( ran 𝑢 ∩ ran ( 𝐴 × 𝐴 ) ) ⊆ ran ( 𝐴 × 𝐴 ) |
| 31 |
29 30
|
sstri |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ran ( 𝐴 × 𝐴 ) |
| 32 |
|
rnxpid |
⊢ ran ( 𝐴 × 𝐴 ) = 𝐴 |
| 33 |
31 32
|
sseqtri |
⊢ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝐴 |
| 34 |
33
|
a1i |
⊢ ( ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝐴 ) |
| 35 |
26 34
|
ssind |
⊢ ( ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑎 ∩ 𝐴 ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ ( 𝑎 ∩ 𝐴 ) ) |
| 37 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
| 38 |
36 37
|
sseqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑏 ) |
| 39 |
|
imaeq1 |
⊢ ( 𝑣 = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑣 “ { 𝑥 } ) = ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ) |
| 40 |
39
|
sseq1d |
⊢ ( 𝑣 = ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ↔ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑏 ) ) |
| 41 |
40
|
rspcev |
⊢ ( ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝑢 ∩ ( 𝐴 × 𝐴 ) ) “ { 𝑥 } ) ⊆ 𝑏 ) → ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 42 |
21 38 41
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) ∧ 𝑢 ∈ 𝑈 ) ∧ ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) → ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 43 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) |
| 44 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑥 ∈ 𝑏 ) |
| 45 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
| 46 |
44 45
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑥 ∈ ( 𝑎 ∩ 𝐴 ) ) |
| 47 |
46
|
elin1d |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → 𝑥 ∈ 𝑎 ) |
| 48 |
|
elutop |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑎 ∈ ( unifTop ‘ 𝑈 ) ↔ ( 𝑎 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑎 ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) ) ) |
| 49 |
48
|
simplbda |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) → ∀ 𝑥 ∈ 𝑎 ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) |
| 50 |
49
|
r19.21bi |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑥 ∈ 𝑎 ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) |
| 51 |
15 43 47 50
|
syl21anc |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑢 ∈ 𝑈 ( 𝑢 “ { 𝑥 } ) ⊆ 𝑎 ) |
| 52 |
42 51
|
r19.29a |
⊢ ( ( ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) ∧ 𝑎 ∈ ( unifTop ‘ 𝑈 ) ) ∧ 𝑏 = ( 𝑎 ∩ 𝐴 ) ) → ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 53 |
9
|
adantr |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) → ∃ 𝑎 ∈ ( unifTop ‘ 𝑈 ) 𝑏 = ( 𝑎 ∩ 𝐴 ) ) |
| 54 |
52 53
|
r19.29a |
⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) ∧ 𝑥 ∈ 𝑏 ) → ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 55 |
54
|
ralrimiva |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) |
| 56 |
|
trust |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) |
| 57 |
|
elutop |
⊢ ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) → ( 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) ) ) |
| 58 |
56 57
|
syl |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) ) ) |
| 59 |
58
|
biimpar |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝑏 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑏 ∃ 𝑣 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ( 𝑣 “ { 𝑥 } ) ⊆ 𝑏 ) ) → 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| 60 |
1 14 55 59
|
syl12anc |
⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ) → 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |
| 61 |
60
|
ex |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑏 ∈ ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) → 𝑏 ∈ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ) |
| 62 |
61
|
ssrdv |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( unifTop ‘ 𝑈 ) ↾t 𝐴 ) ⊆ ( unifTop ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) |