Metamath Proof Explorer


Theorem restutop

Description: Restriction of a topology induced by an uniform structure. (Contributed by Thierry Arnoux, 12-Dec-2017)

Ref Expression
Assertion restutop U UnifOn X A X unifTop U 𝑡 A unifTop U 𝑡 A × A

Proof

Step Hyp Ref Expression
1 simpl U UnifOn X A X b unifTop U 𝑡 A U UnifOn X A X
2 fvexd U UnifOn X A X unifTop U V
3 elfvex U UnifOn X X V
4 3 adantr U UnifOn X A X X V
5 simpr U UnifOn X A X A X
6 4 5 ssexd U UnifOn X A X A V
7 elrest unifTop U V A V b unifTop U 𝑡 A a unifTop U b = a A
8 2 6 7 syl2anc U UnifOn X A X b unifTop U 𝑡 A a unifTop U b = a A
9 8 biimpa U UnifOn X A X b unifTop U 𝑡 A a unifTop U b = a A
10 inss2 a A A
11 sseq1 b = a A b A a A A
12 10 11 mpbiri b = a A b A
13 12 rexlimivw a unifTop U b = a A b A
14 9 13 syl U UnifOn X A X b unifTop U 𝑡 A b A
15 simp-5l U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A U UnifOn X
16 15 ad2antrr U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a U UnifOn X
17 6 ad6antr U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a A V
18 17 17 xpexd U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a A × A V
19 simplr U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a u U
20 elrestr U UnifOn X A × A V u U u A × A U 𝑡 A × A
21 16 18 19 20 syl3anc U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a u A × A U 𝑡 A × A
22 inss1 u A × A u
23 imass1 u A × A u u A × A x u x
24 22 23 ax-mp u A × A x u x
25 sstr u A × A x u x u x a u A × A x a
26 24 25 mpan u x a u A × A x a
27 imassrn u A × A x ran u A × A
28 rnin ran u A × A ran u ran A × A
29 27 28 sstri u A × A x ran u ran A × A
30 inss2 ran u ran A × A ran A × A
31 29 30 sstri u A × A x ran A × A
32 rnxpid ran A × A = A
33 31 32 sseqtri u A × A x A
34 33 a1i u x a u A × A x A
35 26 34 ssind u x a u A × A x a A
36 35 adantl U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a u A × A x a A
37 simpllr U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a b = a A
38 36 37 sseqtrrd U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a u A × A x b
39 imaeq1 v = u A × A v x = u A × A x
40 39 sseq1d v = u A × A v x b u A × A x b
41 40 rspcev u A × A U 𝑡 A × A u A × A x b v U 𝑡 A × A v x b
42 21 38 41 syl2anc U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a v U 𝑡 A × A v x b
43 simplr U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A a unifTop U
44 simpllr U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A x b
45 simpr U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A b = a A
46 44 45 eleqtrd U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A x a A
47 46 elin1d U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A x a
48 elutop U UnifOn X a unifTop U a X x a u U u x a
49 48 simplbda U UnifOn X a unifTop U x a u U u x a
50 49 r19.21bi U UnifOn X a unifTop U x a u U u x a
51 15 43 47 50 syl21anc U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A u U u x a
52 42 51 r19.29a U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A v U 𝑡 A × A v x b
53 9 adantr U UnifOn X A X b unifTop U 𝑡 A x b a unifTop U b = a A
54 52 53 r19.29a U UnifOn X A X b unifTop U 𝑡 A x b v U 𝑡 A × A v x b
55 54 ralrimiva U UnifOn X A X b unifTop U 𝑡 A x b v U 𝑡 A × A v x b
56 trust U UnifOn X A X U 𝑡 A × A UnifOn A
57 elutop U 𝑡 A × A UnifOn A b unifTop U 𝑡 A × A b A x b v U 𝑡 A × A v x b
58 56 57 syl U UnifOn X A X b unifTop U 𝑡 A × A b A x b v U 𝑡 A × A v x b
59 58 biimpar U UnifOn X A X b A x b v U 𝑡 A × A v x b b unifTop U 𝑡 A × A
60 1 14 55 59 syl12anc U UnifOn X A X b unifTop U 𝑡 A b unifTop U 𝑡 A × A
61 60 ex U UnifOn X A X b unifTop U 𝑡 A b unifTop U 𝑡 A × A
62 61 ssrdv U UnifOn X A X unifTop U 𝑡 A unifTop U 𝑡 A × A