| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satfv1fvfmla1.x |
⊢ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 𝑀 ∈ 𝑉 ) |
| 3 |
|
simpr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 𝐸 ∈ 𝑊 ) |
| 4 |
|
1onn |
⊢ 1o ∈ ω |
| 5 |
4
|
a1i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 1o ∈ ω ) |
| 6 |
2 3 5
|
3jca |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈ ω ) ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈ ω ) ) |
| 8 |
|
satffun |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ) |
| 10 |
|
simp2l |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐼 ∈ ω ) |
| 11 |
|
simp2r |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐽 ∈ ω ) |
| 12 |
|
simp3l |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐾 ∈ ω ) |
| 13 |
|
simp3r |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐿 ∈ ω ) |
| 14 |
|
eqid |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } |
| 15 |
1 14
|
pm3.2i |
⊢ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) |
| 16 |
15
|
a1i |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 ∈𝑔 𝑙 ) = ( 𝐾 ∈𝑔 𝑙 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑎 ‘ 𝑘 ) = ( 𝑎 ‘ 𝐾 ) ) |
| 21 |
20
|
breq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ↔ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) |
| 22 |
21
|
notbid |
⊢ ( 𝑘 = 𝐾 → ( ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ↔ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) |
| 23 |
22
|
orbi2d |
⊢ ( 𝑘 = 𝐾 → ( ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) |
| 24 |
23
|
rabbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 25 |
24
|
eqeq2d |
⊢ ( 𝑘 = 𝐾 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 26 |
19 25
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑙 = 𝐿 → ( 𝐾 ∈𝑔 𝑙 ) = ( 𝐾 ∈𝑔 𝐿 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑙 = 𝐿 → ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) |
| 29 |
28
|
eqeq2d |
⊢ ( 𝑙 = 𝐿 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑙 = 𝐿 → ( 𝑎 ‘ 𝑙 ) = ( 𝑎 ‘ 𝐿 ) ) |
| 31 |
30
|
breq2d |
⊢ ( 𝑙 = 𝐿 → ( ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ↔ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) |
| 32 |
31
|
notbid |
⊢ ( 𝑙 = 𝐿 → ( ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ↔ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) |
| 33 |
32
|
orbi2d |
⊢ ( 𝑙 = 𝐿 → ( ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) ) |
| 34 |
33
|
rabbidv |
⊢ ( 𝑙 = 𝐿 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) |
| 35 |
34
|
eqeq2d |
⊢ ( 𝑙 = 𝐿 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) |
| 36 |
29 35
|
anbi12d |
⊢ ( 𝑙 = 𝐿 → ( ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) ) |
| 37 |
26 36
|
rspc2ev |
⊢ ( ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ∧ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 38 |
12 13 16 37
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 39 |
38
|
orcd |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝐼 ∈𝑔 𝑗 ) ) |
| 41 |
40
|
oveq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 42 |
41
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 43 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝑎 ‘ 𝑖 ) = ( 𝑎 ‘ 𝐼 ) ) |
| 44 |
43
|
breq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) |
| 45 |
44
|
notbid |
⊢ ( 𝑖 = 𝐼 → ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) |
| 46 |
45
|
orbi1d |
⊢ ( 𝑖 = 𝐼 → ( ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) |
| 47 |
46
|
rabbidv |
⊢ ( 𝑖 = 𝐼 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 48 |
47
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 49 |
42 48
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 50 |
49
|
2rexbidv |
⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 51 |
|
eqidd |
⊢ ( 𝑖 = 𝐼 → 𝑛 = 𝑛 ) |
| 52 |
51 40
|
goaleq12d |
⊢ ( 𝑖 = 𝐼 → ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ) ) |
| 54 |
|
eqeq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 = 𝑛 ↔ 𝐼 = 𝑛 ) ) |
| 55 |
|
biidd |
⊢ ( 𝑖 = 𝐼 → ( if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ↔ if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) |
| 56 |
43
|
breq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ↔ ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ) ) |
| 57 |
56 44
|
ifpbi23d |
⊢ ( 𝑖 = 𝐼 → ( if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ↔ if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) |
| 58 |
54 55 57
|
ifpbi123d |
⊢ ( 𝑖 = 𝐼 → ( if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ↔ if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) ) |
| 59 |
58
|
ralbidv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ↔ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) ) |
| 60 |
59
|
rabbidv |
⊢ ( 𝑖 = 𝐼 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) |
| 61 |
60
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) |
| 62 |
53 61
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 63 |
62
|
rexbidv |
⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 64 |
50 63
|
orbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 65 |
|
oveq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝐼 ∈𝑔 𝑗 ) = ( 𝐼 ∈𝑔 𝐽 ) ) |
| 66 |
65
|
oveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 67 |
66
|
eqeq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 68 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( 𝑎 ‘ 𝑗 ) = ( 𝑎 ‘ 𝐽 ) ) |
| 69 |
68
|
breq2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) |
| 70 |
69
|
notbid |
⊢ ( 𝑗 = 𝐽 → ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) |
| 71 |
70
|
orbi1d |
⊢ ( 𝑗 = 𝐽 → ( ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) |
| 72 |
71
|
rabbidv |
⊢ ( 𝑗 = 𝐽 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 73 |
72
|
eqeq2d |
⊢ ( 𝑗 = 𝐽 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 74 |
67 73
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 75 |
74
|
2rexbidv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 76 |
|
eqidd |
⊢ ( 𝑗 = 𝐽 → 𝑛 = 𝑛 ) |
| 77 |
76 65
|
goaleq12d |
⊢ ( 𝑗 = 𝐽 → ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ) |
| 78 |
77
|
eqeq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ) ) |
| 79 |
|
eqeq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 = 𝑛 ↔ 𝐽 = 𝑛 ) ) |
| 80 |
|
biidd |
⊢ ( 𝑗 = 𝐽 → ( 𝑧 𝐸 𝑧 ↔ 𝑧 𝐸 𝑧 ) ) |
| 81 |
68
|
breq2d |
⊢ ( 𝑗 = 𝐽 → ( 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) |
| 82 |
79 80 81
|
ifpbi123d |
⊢ ( 𝑗 = 𝐽 → ( if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ↔ if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) |
| 83 |
|
biidd |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ↔ ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ) ) |
| 84 |
79 83 69
|
ifpbi123d |
⊢ ( 𝑗 = 𝐽 → ( if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ↔ if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) |
| 85 |
82 84
|
ifpbi23d |
⊢ ( 𝑗 = 𝐽 → ( if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ↔ if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) ) |
| 86 |
85
|
ralbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ↔ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) ) |
| 87 |
86
|
rabbidv |
⊢ ( 𝑗 = 𝐽 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) |
| 88 |
87
|
eqeq2d |
⊢ ( 𝑗 = 𝐽 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) |
| 89 |
78 88
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) |
| 90 |
89
|
rexbidv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) |
| 91 |
75 90
|
orbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) ) |
| 92 |
64 91
|
rspc2ev |
⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 93 |
10 11 39 92
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 94 |
1
|
ovexi |
⊢ 𝑋 ∈ V |
| 95 |
94
|
a1i |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ V ) |
| 96 |
|
ovex |
⊢ ( 𝑀 ↑m ω ) ∈ V |
| 97 |
96
|
rabex |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ∈ V |
| 98 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 99 |
|
eqeq1 |
⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 100 |
98 99
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 101 |
100
|
2rexbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 102 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 103 |
|
eqeq1 |
⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) |
| 104 |
102 103
|
bi2anan9 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 105 |
104
|
rexbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 106 |
101 105
|
orbi12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 107 |
106
|
2rexbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 108 |
107
|
opelopabga |
⊢ ( ( 𝑋 ∈ V ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ∈ V ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 109 |
95 97 108
|
sylancl |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 110 |
93 109
|
mpbird |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) |
| 111 |
110
|
olcd |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∨ 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 112 |
|
elun |
⊢ ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ↔ ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∨ 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 113 |
111 112
|
sylibr |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 114 |
|
eqid |
⊢ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 ) |
| 115 |
114
|
satfv1 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 116 |
115
|
eleq2d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ↔ 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) ) |
| 117 |
116
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ↔ 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) ) |
| 118 |
113 117
|
mpbird |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ) |
| 119 |
|
funopfv |
⊢ ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) |
| 120 |
9 118 119
|
sylc |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) |