| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satfv1.s |
⊢ 𝑆 = ( 𝑀 Sat 𝐸 ) |
| 2 |
|
df-1o |
⊢ 1o = suc ∅ |
| 3 |
2
|
fveq2i |
⊢ ( 𝑆 ‘ 1o ) = ( 𝑆 ‘ suc ∅ ) |
| 4 |
3
|
a1i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 1o ) = ( 𝑆 ‘ suc ∅ ) ) |
| 5 |
|
peano1 |
⊢ ∅ ∈ ω |
| 6 |
1
|
satfvsuc |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ ω ) → ( 𝑆 ‘ suc ∅ ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) } ) ) |
| 7 |
5 6
|
mp3an3 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ suc ∅ ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) } ) ) |
| 8 |
1
|
satfv0 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) |
| 9 |
8
|
rexeqdv |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ∃ 𝑜 ∈ { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ) ) |
| 10 |
|
eqid |
⊢ { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } = { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } |
| 11 |
|
vex |
⊢ 𝑒 ∈ V |
| 12 |
|
vex |
⊢ 𝑏 ∈ V |
| 13 |
11 12
|
op1std |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 1st ‘ 𝑜 ) = 𝑒 ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ) |
| 15 |
14
|
eqeq2d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ↔ 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ) ) |
| 16 |
11 12
|
op2ndd |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 2nd ‘ 𝑜 ) = 𝑏 ) |
| 17 |
16
|
ineq1d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) = ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) |
| 18 |
17
|
difeq2d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ) |
| 20 |
15 19
|
anbi12d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ) ) |
| 21 |
20
|
rexbidv |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ) ) |
| 22 |
|
eqidd |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → 𝑛 = 𝑛 ) |
| 23 |
22 13
|
goaleq12d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) = ∀𝑔 𝑛 𝑒 ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ↔ 𝑥 = ∀𝑔 𝑛 𝑒 ) ) |
| 25 |
16
|
eleq2d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) ↔ ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ) ) |
| 26 |
25
|
ralbidv |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) ↔ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ) ) |
| 27 |
26
|
rabbidv |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) |
| 28 |
27
|
eqeq2d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) |
| 29 |
24 28
|
anbi12d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ↔ ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) |
| 30 |
29
|
rexbidv |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) |
| 31 |
21 30
|
orbi12d |
⊢ ( 𝑜 = 〈 𝑒 , 𝑏 〉 → ( ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 32 |
10 31
|
rexopabb |
⊢ ( ∃ 𝑜 ∈ { 〈 𝑒 , 𝑏 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 33 |
9 32
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 34 |
1
|
satfv0 |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ ∅ ) = { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } ) |
| 35 |
34
|
rexeqdv |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ∃ 𝑝 ∈ { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ) ) |
| 36 |
|
eqid |
⊢ { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } = { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } |
| 37 |
|
vex |
⊢ 𝑐 ∈ V |
| 38 |
|
vex |
⊢ 𝑑 ∈ V |
| 39 |
37 38
|
op1std |
⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 1st ‘ 𝑝 ) = 𝑐 ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) = ( 𝑒 ⊼𝑔 𝑐 ) ) |
| 41 |
40
|
eqeq2d |
⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ↔ 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ) ) |
| 42 |
37 38
|
op2ndd |
⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 2nd ‘ 𝑝 ) = 𝑑 ) |
| 43 |
42
|
ineq2d |
⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) = ( 𝑏 ∩ 𝑑 ) ) |
| 44 |
43
|
difeq2d |
⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) |
| 45 |
44
|
eqeq2d |
⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) |
| 46 |
41 45
|
anbi12d |
⊢ ( 𝑝 = 〈 𝑐 , 𝑑 〉 → ( ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 47 |
36 46
|
rexopabb |
⊢ ( ∃ 𝑝 ∈ { 〈 𝑐 , 𝑑 〉 ∣ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) } ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
| 48 |
35 47
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ↔ ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ) ) |
| 49 |
48
|
orbi1d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 50 |
49
|
anbi2d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 51 |
50
|
2exbidv |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 52 |
|
r19.41vv |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 53 |
|
oveq1 |
⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑒 ⊼𝑔 𝑐 ) = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ) |
| 54 |
53
|
eqeq2d |
⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ) ) |
| 55 |
|
ineq1 |
⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( 𝑏 ∩ 𝑑 ) = ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) |
| 56 |
55
|
difeq2d |
⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) |
| 57 |
56
|
eqeq2d |
⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) |
| 58 |
54 57
|
bi2anan9 |
⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 59 |
58
|
anbi2d |
⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) ) |
| 60 |
59
|
2exbidv |
⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) ) |
| 61 |
|
eqidd |
⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑛 = 𝑛 ) |
| 62 |
|
id |
⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ) |
| 63 |
61 62
|
goaleq12d |
⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ∀𝑔 𝑛 𝑒 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ) |
| 64 |
63
|
eqeq2d |
⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ∀𝑔 𝑛 𝑒 ↔ 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 65 |
|
nfrab1 |
⊢ Ⅎ 𝑎 { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } |
| 66 |
65
|
nfeq2 |
⊢ Ⅎ 𝑎 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } |
| 67 |
|
eleq2 |
⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ↔ ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 68 |
67
|
ralbidv |
⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 ↔ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 69 |
66 68
|
rabbid |
⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) |
| 70 |
69
|
eqeq2d |
⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) |
| 71 |
64 70
|
bi2anan9 |
⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ↔ ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 72 |
71
|
rexbidv |
⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ↔ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 73 |
60 72
|
orbi12d |
⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) |
| 74 |
73
|
adantl |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ↔ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) |
| 75 |
|
r19.41vv |
⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 76 |
|
oveq2 |
⊢ ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 78 |
77
|
eqeq2d |
⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 79 |
|
ineq2 |
⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) = ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) |
| 80 |
79
|
difeq2d |
⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) |
| 81 |
|
inrab |
⊢ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } |
| 82 |
81
|
difeq2i |
⊢ ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) = ( ( 𝑀 ↑m ω ) ∖ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 83 |
|
notrab |
⊢ ( ( 𝑀 ↑m ω ) ∖ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ¬ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } |
| 84 |
|
ianor |
⊢ ( ¬ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) |
| 85 |
84
|
rabbii |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ¬ ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∧ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } |
| 86 |
82 83 85
|
3eqtri |
⊢ ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } |
| 87 |
80 86
|
eqtrdi |
⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 88 |
87
|
eqeq2d |
⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 89 |
88
|
adantl |
⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 90 |
78 89
|
anbi12d |
⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 91 |
90
|
biimpa |
⊢ ( ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 92 |
91
|
reximi |
⊢ ( ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 93 |
92
|
reximi |
⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 94 |
75 93
|
sylbir |
⊢ ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 95 |
94
|
exlimivv |
⊢ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 96 |
95
|
a1i |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 97 |
|
simpr |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑛 ∈ ω ) |
| 98 |
|
simpll |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑖 ∈ ω ) |
| 99 |
|
simplr |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → 𝑗 ∈ ω ) |
| 100 |
|
fveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ‘ 𝑖 ) = ( 𝑏 ‘ 𝑖 ) ) |
| 101 |
|
fveq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ‘ 𝑗 ) = ( 𝑏 ‘ 𝑗 ) ) |
| 102 |
100 101
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) ) ) |
| 103 |
102
|
cbvrabv |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } |
| 104 |
103
|
eleq2i |
⊢ ( ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } ) |
| 105 |
104
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } ) |
| 106 |
105
|
rabbii |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } } |
| 107 |
|
satfv1lem |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑏 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑏 ‘ 𝑖 ) 𝐸 ( 𝑏 ‘ 𝑗 ) } } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) |
| 108 |
106 107
|
eqtrid |
⊢ ( ( 𝑛 ∈ ω ∧ 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) |
| 109 |
97 98 99 108
|
syl3anc |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) |
| 110 |
109
|
eqeq2d |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) |
| 111 |
110
|
biimpd |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } → 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) |
| 112 |
111
|
anim2d |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 113 |
112
|
reximdva |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 114 |
113
|
adantr |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 115 |
96 114
|
orim12d |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 116 |
74 115
|
sylbid |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) → ( ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 117 |
116
|
expimpd |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 118 |
117
|
reximdva |
⊢ ( 𝑖 ∈ ω → ( ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 119 |
118
|
reximia |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 120 |
52 119
|
sylbir |
⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 121 |
120
|
exlimivv |
⊢ ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 122 |
|
ovex |
⊢ ( 𝑖 ∈𝑔 𝑗 ) ∈ V |
| 123 |
|
ovex |
⊢ ( 𝑀 ↑m ω ) ∈ V |
| 124 |
123
|
rabex |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∈ V |
| 125 |
122 124
|
pm3.2i |
⊢ ( ( 𝑖 ∈𝑔 𝑗 ) ∈ V ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∈ V ) |
| 126 |
|
eqid |
⊢ ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) |
| 127 |
|
eqid |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } |
| 128 |
126 127
|
pm3.2i |
⊢ ( ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) |
| 129 |
86
|
eqcomi |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) |
| 130 |
129
|
eqeq2i |
⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) |
| 131 |
130
|
biimpi |
⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } → 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) |
| 132 |
131
|
anim2i |
⊢ ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) |
| 133 |
|
ovex |
⊢ ( 𝑘 ∈𝑔 𝑙 ) ∈ V |
| 134 |
123
|
rabex |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ∈ V |
| 135 |
|
eqeq1 |
⊢ ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) → ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ↔ ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 136 |
|
eqeq1 |
⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) |
| 137 |
135 136
|
bi2anan9 |
⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ↔ ( ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) |
| 138 |
76
|
eqeq2d |
⊢ ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ↔ 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 139 |
80
|
eqeq2d |
⊢ ( 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } → ( 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ↔ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) |
| 140 |
138 139
|
bi2anan9 |
⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ↔ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) ) |
| 141 |
137 140
|
anbi12d |
⊢ ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) → ( ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ( ( ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) ) ) |
| 142 |
133 134 141
|
spc2ev |
⊢ ( ( ( ( 𝑘 ∈𝑔 𝑙 ) = ( 𝑘 ∈𝑔 𝑙 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ) ) ) → ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 143 |
128 132 142
|
sylancr |
⊢ ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 144 |
143
|
reximi |
⊢ ( ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑙 ∈ ω ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 145 |
144
|
reximi |
⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 146 |
75
|
bicomi |
⊢ ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 147 |
146
|
2exbii |
⊢ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑐 ∃ 𝑑 ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 148 |
|
2ex2rexrot |
⊢ ( ∃ 𝑐 ∃ 𝑑 ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 149 |
147 148
|
bitri |
⊢ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ∃ 𝑐 ∃ 𝑑 ( ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 150 |
145 149
|
sylibr |
⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) |
| 151 |
150
|
a1i |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) → ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ) ) |
| 152 |
109
|
eqcomd |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) |
| 153 |
152
|
eqeq2d |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ↔ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) |
| 154 |
153
|
biimpd |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } → 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) |
| 155 |
154
|
anim2d |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ 𝑛 ∈ ω ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 156 |
155
|
reximdva |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) → ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 157 |
151 156
|
orim12d |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) |
| 158 |
157
|
imp |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) → ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) |
| 159 |
|
eqid |
⊢ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) |
| 160 |
|
eqid |
⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } |
| 161 |
159 160
|
pm3.2i |
⊢ ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) |
| 162 |
158 161
|
jctil |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) → ( ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) |
| 163 |
|
eqeq1 |
⊢ ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 164 |
|
eqeq1 |
⊢ ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } → ( 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) |
| 165 |
163 164
|
bi2anan9 |
⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ↔ ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ) ) |
| 166 |
165 73
|
anbi12d |
⊢ ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) → ( ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ( ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) ) ) |
| 167 |
166
|
spc2egv |
⊢ ( ( ( 𝑖 ∈𝑔 𝑗 ) ∈ V ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∈ V ) → ( ( ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } } ) ) ) → ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 168 |
125 162 167
|
mpsyl |
⊢ ( ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) → ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 169 |
168
|
ex |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 170 |
169
|
reximdva |
⊢ ( 𝑖 ∈ ω → ( ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ∃ 𝑗 ∈ ω ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) ) |
| 171 |
170
|
reximia |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 172 |
52
|
bicomi |
⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 173 |
172
|
2exbii |
⊢ ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑒 ∃ 𝑏 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 174 |
|
2ex2rexrot |
⊢ ( ∃ 𝑒 ∃ 𝑏 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 175 |
173 174
|
bitri |
⊢ ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑒 ∃ 𝑏 ( ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 176 |
171 175
|
sylibr |
⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) → ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ) |
| 177 |
121 176
|
impbii |
⊢ ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑐 ∃ 𝑑 ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑐 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑑 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) } ) ∧ ( 𝑥 = ( 𝑒 ⊼𝑔 𝑐 ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ 𝑑 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 178 |
51 177
|
bitrdi |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑒 ∃ 𝑏 ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑒 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑏 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) ∧ ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( 𝑒 ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( 𝑏 ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 𝑒 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ 𝑏 } ) ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 179 |
33 178
|
bitrd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 180 |
179
|
opabbidv |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) |
| 181 |
180
|
uneq2d |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑜 ∈ ( 𝑆 ‘ ∅ ) ( ∃ 𝑝 ∈ ( 𝑆 ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑜 ) ⊼𝑔 ( 1st ‘ 𝑝 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑜 ) ∩ ( 2nd ‘ 𝑝 ) ) ) ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 1st ‘ 𝑜 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 ( { 〈 𝑛 , 𝑧 〉 } ∪ ( 𝑎 ↾ ( ω ∖ { 𝑛 } ) ) ) ∈ ( 2nd ‘ 𝑜 ) } ) ) } ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 182 |
4 7 181
|
3eqtrd |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑆 ‘ 1o ) = ( ( 𝑆 ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |