| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 𝑋 ∈ ℝ ) |
| 2 |
1
|
resqcld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( 𝑋 ↑ 2 ) ∈ ℝ ) |
| 3 |
|
simpllr |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) |
| 4 |
3
|
simpld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 𝑌 ∈ ℝ ) |
| 5 |
4
|
resqcld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( 𝑌 ↑ 2 ) ∈ ℝ ) |
| 6 |
2 5
|
readdcld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ∈ ℝ ) |
| 7 |
1
|
sqge0d |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ ( 𝑋 ↑ 2 ) ) |
| 8 |
4
|
sqge0d |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ ( 𝑌 ↑ 2 ) ) |
| 9 |
2 5 7 8
|
addge0d |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ) |
| 10 |
6 9
|
resqrtcld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ) ∈ ℝ ) |
| 11 |
|
simplr |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 𝐷 ∈ ℝ+ ) |
| 12 |
11
|
rpred |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 𝐷 ∈ ℝ ) |
| 13 |
12
|
rehalfcld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( 𝐷 / 2 ) ∈ ℝ ) |
| 14 |
13
|
resqcld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( ( 𝐷 / 2 ) ↑ 2 ) ∈ ℝ ) |
| 15 |
14 14
|
readdcld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ∈ ℝ ) |
| 16 |
13
|
sqge0d |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ ( ( 𝐷 / 2 ) ↑ 2 ) ) |
| 17 |
14 14 16 16
|
addge0d |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) |
| 18 |
15 17
|
resqrtcld |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( √ ‘ ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) ∈ ℝ ) |
| 19 |
|
simprl |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 𝑋 < ( 𝐷 / 2 ) ) |
| 20 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ 𝑋 ) |
| 21 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 22 |
21
|
a1i |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 2 ∈ ℝ+ ) |
| 23 |
11
|
rpge0d |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ 𝐷 ) |
| 24 |
12 22 23
|
divge0d |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ ( 𝐷 / 2 ) ) |
| 25 |
1 13 20 24
|
lt2sqd |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( 𝑋 < ( 𝐷 / 2 ) ↔ ( 𝑋 ↑ 2 ) < ( ( 𝐷 / 2 ) ↑ 2 ) ) ) |
| 26 |
19 25
|
mpbid |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( 𝑋 ↑ 2 ) < ( ( 𝐷 / 2 ) ↑ 2 ) ) |
| 27 |
|
simprr |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 𝑌 < ( 𝐷 / 2 ) ) |
| 28 |
3
|
simprd |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → 0 ≤ 𝑌 ) |
| 29 |
4 13 28 24
|
lt2sqd |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( 𝑌 < ( 𝐷 / 2 ) ↔ ( 𝑌 ↑ 2 ) < ( ( 𝐷 / 2 ) ↑ 2 ) ) ) |
| 30 |
27 29
|
mpbid |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( 𝑌 ↑ 2 ) < ( ( 𝐷 / 2 ) ↑ 2 ) ) |
| 31 |
2 5 14 14 26 30
|
lt2addd |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) < ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) |
| 32 |
6 9 15 17
|
sqrtltd |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) < ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ↔ ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ) < ( √ ‘ ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) ) ) |
| 33 |
31 32
|
mpbid |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ) < ( √ ‘ ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) ) |
| 34 |
|
rpre |
⊢ ( 𝐷 ∈ ℝ+ → 𝐷 ∈ ℝ ) |
| 35 |
34
|
rehalfcld |
⊢ ( 𝐷 ∈ ℝ+ → ( 𝐷 / 2 ) ∈ ℝ ) |
| 36 |
35
|
resqcld |
⊢ ( 𝐷 ∈ ℝ+ → ( ( 𝐷 / 2 ) ↑ 2 ) ∈ ℝ ) |
| 37 |
36
|
recnd |
⊢ ( 𝐷 ∈ ℝ+ → ( ( 𝐷 / 2 ) ↑ 2 ) ∈ ℂ ) |
| 38 |
37
|
2timesd |
⊢ ( 𝐷 ∈ ℝ+ → ( 2 · ( ( 𝐷 / 2 ) ↑ 2 ) ) = ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) |
| 39 |
38
|
fveq2d |
⊢ ( 𝐷 ∈ ℝ+ → ( √ ‘ ( 2 · ( ( 𝐷 / 2 ) ↑ 2 ) ) ) = ( √ ‘ ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) ) |
| 40 |
21
|
a1i |
⊢ ( 𝐷 ∈ ℝ+ → 2 ∈ ℝ+ ) |
| 41 |
|
rpge0 |
⊢ ( 𝐷 ∈ ℝ+ → 0 ≤ 𝐷 ) |
| 42 |
34 40 41
|
divge0d |
⊢ ( 𝐷 ∈ ℝ+ → 0 ≤ ( 𝐷 / 2 ) ) |
| 43 |
35 42
|
sqrtsqd |
⊢ ( 𝐷 ∈ ℝ+ → ( √ ‘ ( ( 𝐷 / 2 ) ↑ 2 ) ) = ( 𝐷 / 2 ) ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝐷 ∈ ℝ+ → ( ( √ ‘ 2 ) · ( √ ‘ ( ( 𝐷 / 2 ) ↑ 2 ) ) ) = ( ( √ ‘ 2 ) · ( 𝐷 / 2 ) ) ) |
| 45 |
|
2re |
⊢ 2 ∈ ℝ |
| 46 |
45
|
a1i |
⊢ ( 𝐷 ∈ ℝ+ → 2 ∈ ℝ ) |
| 47 |
|
0le2 |
⊢ 0 ≤ 2 |
| 48 |
47
|
a1i |
⊢ ( 𝐷 ∈ ℝ+ → 0 ≤ 2 ) |
| 49 |
35
|
sqge0d |
⊢ ( 𝐷 ∈ ℝ+ → 0 ≤ ( ( 𝐷 / 2 ) ↑ 2 ) ) |
| 50 |
46 48 36 49
|
sqrtmuld |
⊢ ( 𝐷 ∈ ℝ+ → ( √ ‘ ( 2 · ( ( 𝐷 / 2 ) ↑ 2 ) ) ) = ( ( √ ‘ 2 ) · ( √ ‘ ( ( 𝐷 / 2 ) ↑ 2 ) ) ) ) |
| 51 |
|
2cnd |
⊢ ( 𝐷 ∈ ℝ+ → 2 ∈ ℂ ) |
| 52 |
51
|
sqrtcld |
⊢ ( 𝐷 ∈ ℝ+ → ( √ ‘ 2 ) ∈ ℂ ) |
| 53 |
|
rpcn |
⊢ ( 𝐷 ∈ ℝ+ → 𝐷 ∈ ℂ ) |
| 54 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 55 |
54
|
a1i |
⊢ ( 𝐷 ∈ ℝ+ → 2 ≠ 0 ) |
| 56 |
52 51 53 55
|
div32d |
⊢ ( 𝐷 ∈ ℝ+ → ( ( ( √ ‘ 2 ) / 2 ) · 𝐷 ) = ( ( √ ‘ 2 ) · ( 𝐷 / 2 ) ) ) |
| 57 |
44 50 56
|
3eqtr4d |
⊢ ( 𝐷 ∈ ℝ+ → ( √ ‘ ( 2 · ( ( 𝐷 / 2 ) ↑ 2 ) ) ) = ( ( ( √ ‘ 2 ) / 2 ) · 𝐷 ) ) |
| 58 |
39 57
|
eqtr3d |
⊢ ( 𝐷 ∈ ℝ+ → ( √ ‘ ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) = ( ( ( √ ‘ 2 ) / 2 ) · 𝐷 ) ) |
| 59 |
|
2lt4 |
⊢ 2 < 4 |
| 60 |
|
4re |
⊢ 4 ∈ ℝ |
| 61 |
|
0re |
⊢ 0 ∈ ℝ |
| 62 |
|
4pos |
⊢ 0 < 4 |
| 63 |
61 60 62
|
ltleii |
⊢ 0 ≤ 4 |
| 64 |
|
sqrtlt |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 4 ∈ ℝ ∧ 0 ≤ 4 ) ) → ( 2 < 4 ↔ ( √ ‘ 2 ) < ( √ ‘ 4 ) ) ) |
| 65 |
45 47 60 63 64
|
mp4an |
⊢ ( 2 < 4 ↔ ( √ ‘ 2 ) < ( √ ‘ 4 ) ) |
| 66 |
59 65
|
mpbi |
⊢ ( √ ‘ 2 ) < ( √ ‘ 4 ) |
| 67 |
|
2pos |
⊢ 0 < 2 |
| 68 |
45 67
|
sqrtpclii |
⊢ ( √ ‘ 2 ) ∈ ℝ |
| 69 |
60 62
|
sqrtpclii |
⊢ ( √ ‘ 4 ) ∈ ℝ |
| 70 |
68 69 45 67
|
ltdiv1ii |
⊢ ( ( √ ‘ 2 ) < ( √ ‘ 4 ) ↔ ( ( √ ‘ 2 ) / 2 ) < ( ( √ ‘ 4 ) / 2 ) ) |
| 71 |
66 70
|
mpbi |
⊢ ( ( √ ‘ 2 ) / 2 ) < ( ( √ ‘ 4 ) / 2 ) |
| 72 |
|
sqrtsq |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( √ ‘ ( 2 ↑ 2 ) ) = 2 ) |
| 73 |
45 47 72
|
mp2an |
⊢ ( √ ‘ ( 2 ↑ 2 ) ) = 2 |
| 74 |
73
|
oveq1i |
⊢ ( ( √ ‘ ( 2 ↑ 2 ) ) / 2 ) = ( 2 / 2 ) |
| 75 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 76 |
75
|
fveq2i |
⊢ ( √ ‘ ( 2 ↑ 2 ) ) = ( √ ‘ 4 ) |
| 77 |
76
|
oveq1i |
⊢ ( ( √ ‘ ( 2 ↑ 2 ) ) / 2 ) = ( ( √ ‘ 4 ) / 2 ) |
| 78 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
| 79 |
74 77 78
|
3eqtr3i |
⊢ ( ( √ ‘ 4 ) / 2 ) = 1 |
| 80 |
71 79
|
breqtri |
⊢ ( ( √ ‘ 2 ) / 2 ) < 1 |
| 81 |
46 48
|
resqrtcld |
⊢ ( 𝐷 ∈ ℝ+ → ( √ ‘ 2 ) ∈ ℝ ) |
| 82 |
81
|
rehalfcld |
⊢ ( 𝐷 ∈ ℝ+ → ( ( √ ‘ 2 ) / 2 ) ∈ ℝ ) |
| 83 |
|
1red |
⊢ ( 𝐷 ∈ ℝ+ → 1 ∈ ℝ ) |
| 84 |
|
id |
⊢ ( 𝐷 ∈ ℝ+ → 𝐷 ∈ ℝ+ ) |
| 85 |
82 83 84
|
ltmul1d |
⊢ ( 𝐷 ∈ ℝ+ → ( ( ( √ ‘ 2 ) / 2 ) < 1 ↔ ( ( ( √ ‘ 2 ) / 2 ) · 𝐷 ) < ( 1 · 𝐷 ) ) ) |
| 86 |
80 85
|
mpbii |
⊢ ( 𝐷 ∈ ℝ+ → ( ( ( √ ‘ 2 ) / 2 ) · 𝐷 ) < ( 1 · 𝐷 ) ) |
| 87 |
53
|
mullidd |
⊢ ( 𝐷 ∈ ℝ+ → ( 1 · 𝐷 ) = 𝐷 ) |
| 88 |
86 87
|
breqtrd |
⊢ ( 𝐷 ∈ ℝ+ → ( ( ( √ ‘ 2 ) / 2 ) · 𝐷 ) < 𝐷 ) |
| 89 |
58 88
|
eqbrtrd |
⊢ ( 𝐷 ∈ ℝ+ → ( √ ‘ ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) < 𝐷 ) |
| 90 |
11 89
|
syl |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( √ ‘ ( ( ( 𝐷 / 2 ) ↑ 2 ) + ( ( 𝐷 / 2 ) ↑ 2 ) ) ) < 𝐷 ) |
| 91 |
10 18 12 33 90
|
lttrd |
⊢ ( ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) ) → ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ) < 𝐷 ) |
| 92 |
91
|
ex |
⊢ ( ( ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) ) ∧ 𝐷 ∈ ℝ+ ) → ( ( 𝑋 < ( 𝐷 / 2 ) ∧ 𝑌 < ( 𝐷 / 2 ) ) → ( √ ‘ ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ) < 𝐷 ) ) |