| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgpt1.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 2 |
1
|
tgpt1 |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Fre ) ) |
| 3 |
|
t1t0 |
⊢ ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 ) |
| 4 |
|
eleq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑧 ) ) |
| 5 |
|
eleq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑧 ) ) |
| 6 |
4 5
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ↔ ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
| 7 |
6
|
rspccva |
⊢ ( ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) |
| 8 |
7
|
adantll |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) |
| 9 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝐺 ∈ Grp ) |
| 11 |
|
simpllr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) |
| 12 |
11
|
simprd |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 14 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 15 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 16 |
13 14 15
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 17 |
10 12 16
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 18 |
17
|
oveq1d |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 19 |
11
|
simpld |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 20 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 21 |
13 20 14
|
grplid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 22 |
10 19 21
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 23 |
18 22
|
eqtrd |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 24 |
13 20 15
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) |
| 25 |
10 12 19 24
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) |
| 26 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑦 ∈ 𝑧 ) |
| 27 |
25 26
|
eqeltrd |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) |
| 28 |
|
oveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) = ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑎 = 𝑥 → ( ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) ) |
| 31 |
|
eqid |
⊢ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 32 |
31
|
mptpreima |
⊢ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) = { 𝑎 ∈ ( Base ‘ 𝐺 ) ∣ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 } |
| 33 |
30 32
|
elrab2 |
⊢ ( 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑥 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) ) |
| 34 |
19 27 33
|
sylanbrc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) |
| 35 |
|
eleq2 |
⊢ ( 𝑤 = ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) ) |
| 36 |
|
eleq2 |
⊢ ( 𝑤 = ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) ) |
| 37 |
35 36
|
imbi12d |
⊢ ( 𝑤 = ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → ( ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ↔ ( 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) ) ) |
| 38 |
|
simplr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) |
| 39 |
|
tgptmd |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) |
| 40 |
39
|
ad3antrrr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝐺 ∈ TopMnd ) |
| 41 |
1 13
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 42 |
41
|
ad3antrrr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 43 |
42 42 12
|
cnmptc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 44 |
42
|
cnmptid |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ 𝑎 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 45 |
1 15
|
tgpsubcn |
⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 46 |
45
|
ad3antrrr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 47 |
42 43 44 46
|
cnmpt12f |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 48 |
42 42 19
|
cnmptc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 49 |
1 20 40 42 47 48
|
cnmpt1plusg |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 50 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐽 ) |
| 51 |
|
cnima |
⊢ ( ( ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) → ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ∈ 𝐽 ) |
| 52 |
49 50 51
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ∈ 𝐽 ) |
| 53 |
37 38 52
|
rspcdva |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑥 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) ) |
| 54 |
34 53
|
mpd |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑎 = 𝑦 → ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) = ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ) |
| 56 |
55
|
oveq1d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 57 |
56
|
eleq1d |
⊢ ( 𝑎 = 𝑦 → ( ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ↔ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) ) |
| 58 |
57 32
|
elrab2 |
⊢ ( 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) ) |
| 59 |
58
|
simprbi |
⊢ ( 𝑦 ∈ ( ◡ ( 𝑎 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑎 ) ( +g ‘ 𝐺 ) 𝑥 ) ) “ 𝑧 ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) |
| 60 |
54 59
|
syl |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → ( ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑧 ) |
| 61 |
23 60
|
eqeltrrd |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧 ) ) → 𝑥 ∈ 𝑧 ) |
| 62 |
61
|
expr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧 ) ) |
| 63 |
8 62
|
impbid |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) ) → ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 65 |
64
|
ex |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) ) |
| 66 |
65
|
imim1d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) → ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → 𝑥 = 𝑦 ) ) ) |
| 67 |
66
|
ralimdvva |
⊢ ( 𝐺 ∈ TopGrp → ( ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → 𝑥 = 𝑦 ) ) ) |
| 68 |
|
ist0-2 |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 69 |
41 68
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Kol2 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) ) ) |
| 70 |
|
ist1-2 |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → 𝑥 = 𝑦 ) ) ) |
| 71 |
41 70
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Fre ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ∀ 𝑤 ∈ 𝐽 ( 𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤 ) → 𝑥 = 𝑦 ) ) ) |
| 72 |
67 69 71
|
3imtr4d |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Kol2 → 𝐽 ∈ Fre ) ) |
| 73 |
3 72
|
impbid2 |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Fre ↔ 𝐽 ∈ Kol2 ) ) |
| 74 |
2 73
|
bitrd |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2 ) ) |