| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptx.1 |
⊢ 𝑇 = ( 𝑅 ×t 𝑆 ) |
| 2 |
|
uptx.2 |
⊢ 𝑋 = ∪ 𝑅 |
| 3 |
|
uptx.3 |
⊢ 𝑌 = ∪ 𝑆 |
| 4 |
|
uptx.4 |
⊢ 𝑍 = ( 𝑋 × 𝑌 ) |
| 5 |
|
uptx.5 |
⊢ 𝑃 = ( 1st ↾ 𝑍 ) |
| 6 |
|
uptx.6 |
⊢ 𝑄 = ( 2nd ↾ 𝑍 ) |
| 7 |
|
eqid |
⊢ ∪ 𝑈 = ∪ 𝑈 |
| 8 |
|
eqid |
⊢ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) |
| 9 |
7 8
|
txcnmpt |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 10 |
1
|
oveq2i |
⊢ ( 𝑈 Cn 𝑇 ) = ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) |
| 11 |
9 10
|
eleqtrrdi |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ) |
| 12 |
7 2
|
cnf |
⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝐹 : ∪ 𝑈 ⟶ 𝑋 ) |
| 13 |
7 3
|
cnf |
⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) |
| 14 |
|
ffn |
⊢ ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 → 𝐹 Fn ∪ 𝑈 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐹 Fn ∪ 𝑈 ) |
| 16 |
|
fo1st |
⊢ 1st : V –onto→ V |
| 17 |
|
fofn |
⊢ ( 1st : V –onto→ V → 1st Fn V ) |
| 18 |
16 17
|
ax-mp |
⊢ 1st Fn V |
| 19 |
|
ssv |
⊢ ( 𝑋 × 𝑌 ) ⊆ V |
| 20 |
|
fnssres |
⊢ ( ( 1st Fn V ∧ ( 𝑋 × 𝑌 ) ⊆ V ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) |
| 21 |
18 19 20
|
mp2an |
⊢ ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) |
| 22 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝑥 ∈ ∪ 𝑈 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 23 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 ∧ 𝑥 ∈ ∪ 𝑈 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑌 ) |
| 24 |
|
opelxpi |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑌 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 25 |
22 23 24
|
syl2an |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝑥 ∈ ∪ 𝑈 ) ∧ ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 ∧ 𝑥 ∈ ∪ 𝑈 ) ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 26 |
25
|
anandirs |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑥 ∈ ∪ 𝑈 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 27 |
26
|
fmpttd |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ) |
| 28 |
|
ffn |
⊢ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn ∪ 𝑈 ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn ∪ 𝑈 ) |
| 30 |
27
|
frnd |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ran ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 31 |
|
fnco |
⊢ ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn ∪ 𝑈 ∧ ran ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝑋 × 𝑌 ) ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn ∪ 𝑈 ) |
| 32 |
21 29 30 31
|
mp3an2i |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn ∪ 𝑈 ) |
| 33 |
|
fvco3 |
⊢ ( ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
| 34 |
27 33
|
sylan |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 36 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 37 |
35 36
|
opeq12d |
⊢ ( 𝑥 = 𝑧 → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 38 |
|
opex |
⊢ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ V |
| 39 |
37 8 38
|
fvmpt |
⊢ ( 𝑧 ∈ ∪ 𝑈 → ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) = 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) |
| 41 |
40
|
fveq2d |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 42 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝑧 ∈ ∪ 𝑈 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑋 ) |
| 43 |
|
ffvelcdm |
⊢ ( ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 ∧ 𝑧 ∈ ∪ 𝑈 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝑌 ) |
| 44 |
|
opelxpi |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑧 ) ∈ 𝑌 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 45 |
42 43 44
|
syl2an |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝑧 ∈ ∪ 𝑈 ) ∧ ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 ∧ 𝑧 ∈ ∪ 𝑈 ) ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 46 |
45
|
anandirs |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 47 |
46
|
fvresd |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 1st ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 48 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
| 49 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑧 ) ∈ V |
| 50 |
48 49
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐹 ‘ 𝑧 ) |
| 51 |
47 50
|
eqtrdi |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 52 |
34 41 51
|
3eqtrrd |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( 𝐹 ‘ 𝑧 ) = ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) |
| 53 |
15 32 52
|
eqfnfvd |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐹 = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 54 |
4
|
reseq2i |
⊢ ( 1st ↾ 𝑍 ) = ( 1st ↾ ( 𝑋 × 𝑌 ) ) |
| 55 |
5 54
|
eqtri |
⊢ 𝑃 = ( 1st ↾ ( 𝑋 × 𝑌 ) ) |
| 56 |
55
|
coeq1i |
⊢ ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) = ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 57 |
53 56
|
eqtr4di |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 58 |
12 13 57
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 59 |
|
ffn |
⊢ ( 𝐺 : ∪ 𝑈 ⟶ 𝑌 → 𝐺 Fn ∪ 𝑈 ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐺 Fn ∪ 𝑈 ) |
| 61 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
| 62 |
|
fofn |
⊢ ( 2nd : V –onto→ V → 2nd Fn V ) |
| 63 |
61 62
|
ax-mp |
⊢ 2nd Fn V |
| 64 |
|
fnssres |
⊢ ( ( 2nd Fn V ∧ ( 𝑋 × 𝑌 ) ⊆ V ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) |
| 65 |
63 19 64
|
mp2an |
⊢ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) |
| 66 |
|
fnco |
⊢ ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) Fn ∪ 𝑈 ∧ ran ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ⊆ ( 𝑋 × 𝑌 ) ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn ∪ 𝑈 ) |
| 67 |
65 29 30 66
|
mp3an2i |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) Fn ∪ 𝑈 ) |
| 68 |
|
fvco3 |
⊢ ( ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
| 69 |
27 68
|
sylan |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) ) |
| 70 |
40
|
fveq2d |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ‘ 𝑧 ) ) = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 71 |
46
|
fvresd |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 2nd ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) ) |
| 72 |
48 49
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐺 ‘ 𝑧 ) |
| 73 |
71 72
|
eqtrdi |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐺 ‘ 𝑧 ) 〉 ) = ( 𝐺 ‘ 𝑧 ) ) |
| 74 |
69 70 73
|
3eqtrrd |
⊢ ( ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) ∧ 𝑧 ∈ ∪ 𝑈 ) → ( 𝐺 ‘ 𝑧 ) = ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ‘ 𝑧 ) ) |
| 75 |
60 67 74
|
eqfnfvd |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐺 = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 76 |
4
|
reseq2i |
⊢ ( 2nd ↾ 𝑍 ) = ( 2nd ↾ ( 𝑋 × 𝑌 ) ) |
| 77 |
6 76
|
eqtri |
⊢ 𝑄 = ( 2nd ↾ ( 𝑋 × 𝑌 ) ) |
| 78 |
77
|
coeq1i |
⊢ ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) = ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) |
| 79 |
75 78
|
eqtr4di |
⊢ ( ( 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 80 |
12 13 79
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 81 |
11 58 80
|
jca32 |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) |
| 82 |
|
eleq1 |
⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ↔ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ) ) |
| 83 |
|
coeq2 |
⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝑃 ∘ ℎ ) = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 84 |
83
|
eqeq2d |
⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝐹 = ( 𝑃 ∘ ℎ ) ↔ 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
| 85 |
|
coeq2 |
⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝑄 ∘ ℎ ) = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) |
| 86 |
85
|
eqeq2d |
⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( 𝐺 = ( 𝑄 ∘ ℎ ) ↔ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) |
| 87 |
84 86
|
anbi12d |
⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ( 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) |
| 88 |
82 87
|
anbi12d |
⊢ ( ℎ = ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) → ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ↔ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) ) ) |
| 89 |
88
|
spcegv |
⊢ ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) → ( ( ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ∧ 𝐺 = ( 𝑄 ∘ ( 𝑥 ∈ ∪ 𝑈 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) ) ) ) → ∃ ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 90 |
11 81 89
|
sylc |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃ ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 91 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
| 92 |
7 91
|
cnf |
⊢ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) → ℎ : ∪ 𝑈 ⟶ ∪ 𝑇 ) |
| 93 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝑅 ∈ Top ) |
| 94 |
|
cntop2 |
⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝑆 ∈ Top ) |
| 95 |
1
|
unieqi |
⊢ ∪ 𝑇 = ∪ ( 𝑅 ×t 𝑆 ) |
| 96 |
2 3
|
txuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 97 |
95 96
|
eqtr4id |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ 𝑇 = ( 𝑋 × 𝑌 ) ) |
| 98 |
93 94 97
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∪ 𝑇 = ( 𝑋 × 𝑌 ) ) |
| 99 |
98
|
feq3d |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ℎ : ∪ 𝑈 ⟶ ∪ 𝑇 ↔ ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ) ) |
| 100 |
92 99
|
imbitrid |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ℎ ∈ ( 𝑈 Cn 𝑇 ) → ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ) ) |
| 101 |
100
|
anim1d |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 102 |
|
3anass |
⊢ ( ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 103 |
101 102
|
imbitrrdi |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 104 |
103
|
alrimiv |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∀ ℎ ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 105 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝑈 ∈ Top ) |
| 106 |
105
|
uniexd |
⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → ∪ 𝑈 ∈ V ) |
| 107 |
55 77
|
upxp |
⊢ ( ( ∪ 𝑈 ∈ V ∧ 𝐹 : ∪ 𝑈 ⟶ 𝑋 ∧ 𝐺 : ∪ 𝑈 ⟶ 𝑌 ) → ∃! ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| 108 |
106 12 13 107
|
syl2an3an |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃! ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| 109 |
|
eumo |
⊢ ( ∃! ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ∃* ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| 110 |
108 109
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃* ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |
| 111 |
|
moim |
⊢ ( ∀ ℎ ( ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) → ( ∃* ℎ ( ℎ : ∪ 𝑈 ⟶ ( 𝑋 × 𝑌 ) ∧ 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) → ∃* ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 112 |
104 110 111
|
sylc |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃* ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 113 |
|
df-reu |
⊢ ( ∃! ℎ ∈ ( 𝑈 Cn 𝑇 ) ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ∃! ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) |
| 114 |
|
df-eu |
⊢ ( ∃! ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ↔ ( ∃ ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ ∃* ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 115 |
113 114
|
bitri |
⊢ ( ∃! ℎ ∈ ( 𝑈 Cn 𝑇 ) ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ↔ ( ∃ ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ∧ ∃* ℎ ( ℎ ∈ ( 𝑈 Cn 𝑇 ) ∧ ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 116 |
90 112 115
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∃! ℎ ∈ ( 𝑈 Cn 𝑇 ) ( 𝐹 = ( 𝑃 ∘ ℎ ) ∧ 𝐺 = ( 𝑄 ∘ ℎ ) ) ) |