| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txcn.1 |
⊢ 𝑋 = ∪ 𝑅 |
| 2 |
|
txcn.2 |
⊢ 𝑌 = ∪ 𝑆 |
| 3 |
|
txcn.3 |
⊢ 𝑍 = ( 𝑋 × 𝑌 ) |
| 4 |
|
txcn.4 |
⊢ 𝑊 = ∪ 𝑈 |
| 5 |
|
txcn.5 |
⊢ 𝑃 = ( 1st ↾ 𝑍 ) |
| 6 |
|
txcn.6 |
⊢ 𝑄 = ( 2nd ↾ 𝑍 ) |
| 7 |
1
|
toptopon |
⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 8 |
2
|
toptopon |
⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) |
| 9 |
3
|
reseq2i |
⊢ ( 1st ↾ 𝑍 ) = ( 1st ↾ ( 𝑋 × 𝑌 ) ) |
| 10 |
5 9
|
eqtri |
⊢ 𝑃 = ( 1st ↾ ( 𝑋 × 𝑌 ) ) |
| 11 |
|
tx1cn |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
| 12 |
10 11
|
eqeltrid |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → 𝑃 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |
| 13 |
3
|
reseq2i |
⊢ ( 2nd ↾ 𝑍 ) = ( 2nd ↾ ( 𝑋 × 𝑌 ) ) |
| 14 |
6 13
|
eqtri |
⊢ 𝑄 = ( 2nd ↾ ( 𝑋 × 𝑌 ) ) |
| 15 |
|
tx2cn |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 16 |
14 15
|
eqeltrid |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → 𝑄 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |
| 17 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ 𝑃 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) → ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ) |
| 18 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ 𝑄 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) → ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) |
| 19 |
17 18
|
anim12dan |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( 𝑃 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ∧ 𝑄 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) |
| 20 |
19
|
expcom |
⊢ ( ( 𝑃 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ∧ 𝑄 ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| 21 |
12 16 20
|
syl2anc |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| 22 |
7 8 21
|
syl2anb |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| 23 |
22
|
3adant3 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |
| 24 |
|
cntop1 |
⊢ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) → 𝑈 ∈ Top ) |
| 25 |
24
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → 𝑈 ∈ Top ) |
| 26 |
4
|
topopn |
⊢ ( 𝑈 ∈ Top → 𝑊 ∈ 𝑈 ) |
| 27 |
25 26
|
syl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → 𝑊 ∈ 𝑈 ) |
| 28 |
4 1
|
cnf |
⊢ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) → ( 𝑃 ∘ 𝐹 ) : 𝑊 ⟶ 𝑋 ) |
| 29 |
28
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( 𝑃 ∘ 𝐹 ) : 𝑊 ⟶ 𝑋 ) |
| 30 |
4 2
|
cnf |
⊢ ( ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) → ( 𝑄 ∘ 𝐹 ) : 𝑊 ⟶ 𝑌 ) |
| 31 |
30
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( 𝑄 ∘ 𝐹 ) : 𝑊 ⟶ 𝑌 ) |
| 32 |
10 14
|
upxp |
⊢ ( ( 𝑊 ∈ 𝑈 ∧ ( 𝑃 ∘ 𝐹 ) : 𝑊 ⟶ 𝑋 ∧ ( 𝑄 ∘ 𝐹 ) : 𝑊 ⟶ 𝑌 ) → ∃! ℎ ( ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 33 |
|
feq3 |
⊢ ( 𝑍 = ( 𝑋 × 𝑌 ) → ( ℎ : 𝑊 ⟶ 𝑍 ↔ ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ) ) |
| 34 |
3 33
|
ax-mp |
⊢ ( ℎ : 𝑊 ⟶ 𝑍 ↔ ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ) |
| 35 |
34
|
3anbi1i |
⊢ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ ( ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 36 |
35
|
eubii |
⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ ∃! ℎ ( ℎ : 𝑊 ⟶ ( 𝑋 × 𝑌 ) ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 37 |
32 36
|
sylibr |
⊢ ( ( 𝑊 ∈ 𝑈 ∧ ( 𝑃 ∘ 𝐹 ) : 𝑊 ⟶ 𝑋 ∧ ( 𝑄 ∘ 𝐹 ) : 𝑊 ⟶ 𝑌 ) → ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 38 |
27 29 31 37
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 39 |
|
euex |
⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ∃ ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃ ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 41 |
|
simpll3 |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → 𝐹 : 𝑊 ⟶ 𝑍 ) |
| 42 |
27
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → 𝑊 ∈ 𝑈 ) |
| 43 |
41 42
|
fexd |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → 𝐹 ∈ V ) |
| 44 |
|
eumo |
⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 45 |
38 44
|
syl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 47 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 48 |
|
3anass |
⊢ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) |
| 49 |
|
coeq2 |
⊢ ( 𝐹 = ℎ → ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ) |
| 50 |
|
coeq2 |
⊢ ( 𝐹 = ℎ → ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) |
| 51 |
49 50
|
jca |
⊢ ( 𝐹 = ℎ → ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 52 |
51
|
eqcoms |
⊢ ( ℎ = 𝐹 → ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 53 |
52
|
biantrud |
⊢ ( ℎ = 𝐹 → ( ℎ : 𝑊 ⟶ 𝑍 ↔ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 54 |
|
feq1 |
⊢ ( ℎ = 𝐹 → ( ℎ : 𝑊 ⟶ 𝑍 ↔ 𝐹 : 𝑊 ⟶ 𝑍 ) ) |
| 55 |
53 54
|
bitr3d |
⊢ ( ℎ = 𝐹 → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ↔ 𝐹 : 𝑊 ⟶ 𝑍 ) ) |
| 56 |
48 55
|
bitrid |
⊢ ( ℎ = 𝐹 → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ 𝐹 : 𝑊 ⟶ 𝑍 ) ) |
| 57 |
56
|
moi2 |
⊢ ( ( ( 𝐹 ∈ V ∧ ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ∧ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ) → ℎ = 𝐹 ) |
| 58 |
43 46 47 41 57
|
syl22anc |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ℎ = 𝐹 ) |
| 59 |
|
eqid |
⊢ ( 𝑅 ×t 𝑆 ) = ( 𝑅 ×t 𝑆 ) |
| 60 |
59 1 2 3 5 6
|
uptx |
⊢ ( ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) → ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) |
| 62 |
|
df-reu |
⊢ ( ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ↔ ∃! ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) |
| 63 |
|
euex |
⊢ ( ∃! ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ∃ ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) |
| 64 |
62 63
|
sylbi |
⊢ ( ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ∃ ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) |
| 65 |
|
eqid |
⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) |
| 66 |
4 65
|
cnf |
⊢ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ℎ : 𝑊 ⟶ ∪ ( 𝑅 ×t 𝑆 ) ) |
| 67 |
1 2
|
txuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × 𝑌 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 68 |
3 67
|
eqtrid |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑍 = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 69 |
68
|
3adant3 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → 𝑍 = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → 𝑍 = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 71 |
70
|
feq3d |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ℎ : 𝑊 ⟶ 𝑍 ↔ ℎ : 𝑊 ⟶ ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 72 |
66 71
|
imbitrrid |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) → ℎ : 𝑊 ⟶ 𝑍 ) ) |
| 73 |
72
|
anim1d |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) ) |
| 74 |
73 48
|
imbitrrdi |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) ) |
| 75 |
|
simpl |
⊢ ( ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 76 |
74 75
|
jca2 |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) ) |
| 77 |
76
|
eximdv |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ∃ ℎ ( ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ∧ ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) ) |
| 78 |
64 77
|
syl5 |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ∃! ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ( ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) ) |
| 79 |
61 78
|
mpd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) |
| 80 |
|
eupick |
⊢ ( ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ∧ ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) |
| 81 |
38 79 80
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → ( ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) → ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → ℎ ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 83 |
58 82
|
eqeltrrd |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ∧ ( ℎ : 𝑊 ⟶ 𝑍 ∧ ( 𝑃 ∘ 𝐹 ) = ( 𝑃 ∘ ℎ ) ∧ ( 𝑄 ∘ 𝐹 ) = ( 𝑄 ∘ ℎ ) ) ) → 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 84 |
40 83
|
exlimddv |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) ∧ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) → 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |
| 85 |
84
|
ex |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → ( ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) ) |
| 86 |
23 85
|
impbid |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹 : 𝑊 ⟶ 𝑍 ) → ( 𝐹 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ↔ ( ( 𝑃 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑅 ) ∧ ( 𝑄 ∘ 𝐹 ) ∈ ( 𝑈 Cn 𝑆 ) ) ) ) |