| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txcn.1 |
|
| 2 |
|
txcn.2 |
|
| 3 |
|
txcn.3 |
|
| 4 |
|
txcn.4 |
|
| 5 |
|
txcn.5 |
|
| 6 |
|
txcn.6 |
|
| 7 |
1
|
toptopon |
|
| 8 |
2
|
toptopon |
|
| 9 |
3
|
reseq2i |
|
| 10 |
5 9
|
eqtri |
|
| 11 |
|
tx1cn |
|
| 12 |
10 11
|
eqeltrid |
|
| 13 |
3
|
reseq2i |
|
| 14 |
6 13
|
eqtri |
|
| 15 |
|
tx2cn |
|
| 16 |
14 15
|
eqeltrid |
|
| 17 |
|
cnco |
|
| 18 |
|
cnco |
|
| 19 |
17 18
|
anim12dan |
|
| 20 |
19
|
expcom |
|
| 21 |
12 16 20
|
syl2anc |
|
| 22 |
7 8 21
|
syl2anb |
|
| 23 |
22
|
3adant3 |
|
| 24 |
|
cntop1 |
|
| 25 |
24
|
ad2antrl |
|
| 26 |
4
|
topopn |
|
| 27 |
25 26
|
syl |
|
| 28 |
4 1
|
cnf |
|
| 29 |
28
|
ad2antrl |
|
| 30 |
4 2
|
cnf |
|
| 31 |
30
|
ad2antll |
|
| 32 |
10 14
|
upxp |
|
| 33 |
|
feq3 |
|
| 34 |
3 33
|
ax-mp |
|
| 35 |
34
|
3anbi1i |
|
| 36 |
35
|
eubii |
|
| 37 |
32 36
|
sylibr |
|
| 38 |
27 29 31 37
|
syl3anc |
|
| 39 |
|
euex |
|
| 40 |
38 39
|
syl |
|
| 41 |
|
simpll3 |
|
| 42 |
27
|
adantr |
|
| 43 |
41 42
|
fexd |
|
| 44 |
|
eumo |
|
| 45 |
38 44
|
syl |
|
| 46 |
45
|
adantr |
|
| 47 |
|
simpr |
|
| 48 |
|
3anass |
|
| 49 |
|
coeq2 |
|
| 50 |
|
coeq2 |
|
| 51 |
49 50
|
jca |
|
| 52 |
51
|
eqcoms |
|
| 53 |
52
|
biantrud |
|
| 54 |
|
feq1 |
|
| 55 |
53 54
|
bitr3d |
|
| 56 |
48 55
|
bitrid |
|
| 57 |
56
|
moi2 |
|
| 58 |
43 46 47 41 57
|
syl22anc |
|
| 59 |
|
eqid |
|
| 60 |
59 1 2 3 5 6
|
uptx |
|
| 61 |
60
|
adantl |
|
| 62 |
|
df-reu |
|
| 63 |
|
euex |
|
| 64 |
62 63
|
sylbi |
|
| 65 |
|
eqid |
|
| 66 |
4 65
|
cnf |
|
| 67 |
1 2
|
txuni |
|
| 68 |
3 67
|
eqtrid |
|
| 69 |
68
|
3adant3 |
|
| 70 |
69
|
adantr |
|
| 71 |
70
|
feq3d |
|
| 72 |
66 71
|
imbitrrid |
|
| 73 |
72
|
anim1d |
|
| 74 |
73 48
|
imbitrrdi |
|
| 75 |
|
simpl |
|
| 76 |
74 75
|
jca2 |
|
| 77 |
76
|
eximdv |
|
| 78 |
64 77
|
syl5 |
|
| 79 |
61 78
|
mpd |
|
| 80 |
|
eupick |
|
| 81 |
38 79 80
|
syl2anc |
|
| 82 |
81
|
imp |
|
| 83 |
58 82
|
eqeltrrd |
|
| 84 |
40 83
|
exlimddv |
|
| 85 |
84
|
ex |
|
| 86 |
23 85
|
impbid |
|