| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ) |
| 3 |
1 2
|
mp1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ) |
| 4 |
3
|
simprbda |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 5 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 6 |
5
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ+ ) |
| 7 |
3
|
simplbda |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 8 |
4 6 7
|
rpgecld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
| 9 |
8
|
ex |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ+ ) ) |
| 10 |
9
|
ssrdv |
⊢ ( ⊤ → ( 1 [,) +∞ ) ⊆ ℝ+ ) |
| 11 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 12 |
10 11
|
sstrdi |
⊢ ( ⊤ → ( 1 [,) +∞ ) ⊆ ℝ ) |
| 13 |
1
|
a1i |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 14 |
|
fzfid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 15 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 16 |
15
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 17 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 19 |
18 16
|
nndivred |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 20 |
14 19
|
fsumrecl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 21 |
8
|
relogcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 22 |
20 21
|
resubcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 24 |
|
vmadivsum |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
| 25 |
24
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 26 |
10 25
|
o1res2 |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 27 |
|
fzfid |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → ( 1 ... ( ⌊ ‘ 𝑦 ) ) ∈ Fin ) |
| 28 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) → 𝑛 ∈ ℕ ) |
| 29 |
28
|
adantl |
⊢ ( ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → 𝑛 ∈ ℕ ) |
| 30 |
29 17
|
syl |
⊢ ( ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 31 |
30 29
|
nndivred |
⊢ ( ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 32 |
27 31
|
fsumrecl |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 33 |
|
simprl |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 34 |
5
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → 1 ∈ ℝ+ ) |
| 35 |
|
simprr |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → 1 ≤ 𝑦 ) |
| 36 |
33 34 35
|
rpgecld |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → 𝑦 ∈ ℝ+ ) |
| 37 |
36
|
relogcld |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → ( log ‘ 𝑦 ) ∈ ℝ ) |
| 38 |
32 37
|
readdcld |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) + ( log ‘ 𝑦 ) ) ∈ ℝ ) |
| 39 |
22
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 40 |
39
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 41 |
40
|
abscld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 42 |
20
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 43 |
8
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℝ+ ) |
| 44 |
43
|
relogcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 45 |
42 44
|
readdcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) + ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 46 |
38
|
ad2ant2r |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) + ( log ‘ 𝑦 ) ) ∈ ℝ ) |
| 47 |
42
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 48 |
44
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 49 |
47 48
|
abs2dif2d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + ( abs ‘ ( log ‘ 𝑥 ) ) ) ) |
| 50 |
16
|
nnrpd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 51 |
|
vmage0 |
⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) |
| 52 |
16 51
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
| 53 |
18 50 52
|
divge0d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
| 54 |
14 19 53
|
fsumge0 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
| 55 |
54
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 0 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
| 56 |
42 55
|
absidd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
| 57 |
21
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 58 |
4
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℝ ) |
| 59 |
7
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 1 ≤ 𝑥 ) |
| 60 |
58 59
|
logge0d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 0 ≤ ( log ‘ 𝑥 ) ) |
| 61 |
57 60
|
absidd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ ( log ‘ 𝑥 ) ) = ( log ‘ 𝑥 ) ) |
| 62 |
56 61
|
oveq12d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) + ( abs ‘ ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) + ( log ‘ 𝑥 ) ) ) |
| 63 |
49 62
|
breqtrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) + ( log ‘ 𝑥 ) ) ) |
| 64 |
32
|
ad2ant2r |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 65 |
36
|
ad2ant2r |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ℝ+ ) |
| 66 |
65
|
relogcld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( log ‘ 𝑦 ) ∈ ℝ ) |
| 67 |
|
fzfid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 1 ... ( ⌊ ‘ 𝑦 ) ) ∈ Fin ) |
| 68 |
28
|
adantl |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → 𝑛 ∈ ℕ ) |
| 69 |
68 17
|
syl |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 70 |
69 68
|
nndivred |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 71 |
68
|
nnrpd |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 72 |
68 51
|
syl |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
| 73 |
69 71 72
|
divge0d |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) → 0 ≤ ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
| 74 |
|
simprll |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 75 |
|
simprr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 < 𝑦 ) |
| 76 |
58 74 75
|
ltled |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ≤ 𝑦 ) |
| 77 |
|
flword2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) → ( ⌊ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 78 |
58 74 76 77
|
syl3anc |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ⌊ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 79 |
|
fzss2 |
⊢ ( ( ⌊ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ) |
| 81 |
67 70 73 80
|
fsumless |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) |
| 82 |
74 43 76
|
rpgecld |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ℝ+ ) |
| 83 |
43 82
|
logled |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 𝑥 ≤ 𝑦 ↔ ( log ‘ 𝑥 ) ≤ ( log ‘ 𝑦 ) ) ) |
| 84 |
76 83
|
mpbid |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( log ‘ 𝑥 ) ≤ ( log ‘ 𝑦 ) ) |
| 85 |
42 44 64 66 81 84
|
le2addd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) + ( log ‘ 𝑥 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) + ( log ‘ 𝑦 ) ) ) |
| 86 |
41 45 46 63 85
|
letrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) + ( log ‘ 𝑦 ) ) ) |
| 87 |
12 13 23 26 38 86
|
o1bddrp |
⊢ ( ⊤ → ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ≤ 𝑐 ) |
| 88 |
87
|
mptru |
⊢ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ( 1 [,) +∞ ) ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ≤ 𝑐 |