| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|
| 2 |
|
elicopnf |
|
| 3 |
1 2
|
mp1i |
|
| 4 |
3
|
simprbda |
|
| 5 |
|
1rp |
|
| 6 |
5
|
a1i |
|
| 7 |
3
|
simplbda |
|
| 8 |
4 6 7
|
rpgecld |
|
| 9 |
8
|
ex |
|
| 10 |
9
|
ssrdv |
|
| 11 |
|
rpssre |
|
| 12 |
10 11
|
sstrdi |
|
| 13 |
1
|
a1i |
|
| 14 |
|
fzfid |
|
| 15 |
|
elfznn |
|
| 16 |
15
|
adantl |
|
| 17 |
|
vmacl |
|
| 18 |
16 17
|
syl |
|
| 19 |
18 16
|
nndivred |
|
| 20 |
14 19
|
fsumrecl |
|
| 21 |
8
|
relogcld |
|
| 22 |
20 21
|
resubcld |
|
| 23 |
22
|
recnd |
|
| 24 |
|
vmadivsum |
|
| 25 |
24
|
a1i |
|
| 26 |
10 25
|
o1res2 |
|
| 27 |
|
fzfid |
|
| 28 |
|
elfznn |
|
| 29 |
28
|
adantl |
|
| 30 |
29 17
|
syl |
|
| 31 |
30 29
|
nndivred |
|
| 32 |
27 31
|
fsumrecl |
|
| 33 |
|
simprl |
|
| 34 |
5
|
a1i |
|
| 35 |
|
simprr |
|
| 36 |
33 34 35
|
rpgecld |
|
| 37 |
36
|
relogcld |
|
| 38 |
32 37
|
readdcld |
|
| 39 |
22
|
adantr |
|
| 40 |
39
|
recnd |
|
| 41 |
40
|
abscld |
|
| 42 |
20
|
adantr |
|
| 43 |
8
|
adantr |
|
| 44 |
43
|
relogcld |
|
| 45 |
42 44
|
readdcld |
|
| 46 |
38
|
ad2ant2r |
|
| 47 |
42
|
recnd |
|
| 48 |
44
|
recnd |
|
| 49 |
47 48
|
abs2dif2d |
|
| 50 |
16
|
nnrpd |
|
| 51 |
|
vmage0 |
|
| 52 |
16 51
|
syl |
|
| 53 |
18 50 52
|
divge0d |
|
| 54 |
14 19 53
|
fsumge0 |
|
| 55 |
54
|
adantr |
|
| 56 |
42 55
|
absidd |
|
| 57 |
21
|
adantr |
|
| 58 |
4
|
adantr |
|
| 59 |
7
|
adantr |
|
| 60 |
58 59
|
logge0d |
|
| 61 |
57 60
|
absidd |
|
| 62 |
56 61
|
oveq12d |
|
| 63 |
49 62
|
breqtrd |
|
| 64 |
32
|
ad2ant2r |
|
| 65 |
36
|
ad2ant2r |
|
| 66 |
65
|
relogcld |
|
| 67 |
|
fzfid |
|
| 68 |
28
|
adantl |
|
| 69 |
68 17
|
syl |
|
| 70 |
69 68
|
nndivred |
|
| 71 |
68
|
nnrpd |
|
| 72 |
68 51
|
syl |
|
| 73 |
69 71 72
|
divge0d |
|
| 74 |
|
simprll |
|
| 75 |
|
simprr |
|
| 76 |
58 74 75
|
ltled |
|
| 77 |
|
flword2 |
|
| 78 |
58 74 76 77
|
syl3anc |
|
| 79 |
|
fzss2 |
|
| 80 |
78 79
|
syl |
|
| 81 |
67 70 73 80
|
fsumless |
|
| 82 |
74 43 76
|
rpgecld |
|
| 83 |
43 82
|
logled |
|
| 84 |
76 83
|
mpbid |
|
| 85 |
42 44 64 66 81 84
|
le2addd |
|
| 86 |
41 45 46 63 85
|
letrd |
|
| 87 |
12 13 23 26 38 86
|
o1bddrp |
|
| 88 |
87
|
mptru |
|