| Step | Hyp | Ref | Expression | 
						
							| 1 |  | znchr.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 2 |  | znunit.u | ⊢ 𝑈  =  ( Unit ‘ 𝑌 ) | 
						
							| 3 |  | znrrg.e | ⊢ 𝐸  =  ( RLReg ‘ 𝑌 ) | 
						
							| 4 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 6 |  | eqid | ⊢ ( ℤRHom ‘ 𝑌 )  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 7 | 1 5 6 | znzrhfo | ⊢ ( 𝑁  ∈  ℕ0  →  ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 9 | 3 5 | rrgss | ⊢ 𝐸  ⊆  ( Base ‘ 𝑌 ) | 
						
							| 10 | 9 | sseli | ⊢ ( 𝑥  ∈  𝐸  →  𝑥  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 11 |  | foelrn | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 )  ∧  𝑥  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) | 
						
							| 12 | 8 10 11 | syl2an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  𝐸 )  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  𝐸  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) ) | 
						
							| 14 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑁  ∈  ℂ ) | 
						
							| 16 |  | simplr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑛  ∈  ℤ ) | 
						
							| 17 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑁  ∈  ℤ ) | 
						
							| 19 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑁  ≠  0 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑛  =  0  ∧  𝑁  =  0 )  →  𝑁  =  0 ) | 
						
							| 22 | 21 | necon3ai | ⊢ ( 𝑁  ≠  0  →  ¬  ( 𝑛  =  0  ∧  𝑁  =  0 ) ) | 
						
							| 23 | 20 22 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ¬  ( 𝑛  =  0  ∧  𝑁  =  0 ) ) | 
						
							| 24 |  | gcdn0cl | ⊢ ( ( ( 𝑛  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ¬  ( 𝑛  =  0  ∧  𝑁  =  0 ) )  →  ( 𝑛  gcd  𝑁 )  ∈  ℕ ) | 
						
							| 25 | 16 18 23 24 | syl21anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  ∈  ℕ ) | 
						
							| 26 | 25 | nncnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  ∈  ℂ ) | 
						
							| 27 | 25 | nnne0d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  ≠  0 ) | 
						
							| 28 | 15 26 27 | divcan2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑛  gcd  𝑁 )  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  =  𝑁 ) | 
						
							| 29 |  | gcddvds | ⊢ ( ( 𝑛  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑛  gcd  𝑁 )  ∥  𝑛  ∧  ( 𝑛  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 30 | 16 18 29 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑛  gcd  𝑁 )  ∥  𝑛  ∧  ( 𝑛  gcd  𝑁 )  ∥  𝑁 ) ) | 
						
							| 31 | 30 | simpld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  ∥  𝑛 ) | 
						
							| 32 | 25 | nnzd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  ∈  ℤ ) | 
						
							| 33 | 30 | simprd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  ∥  𝑁 ) | 
						
							| 34 |  | simpll | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑁  ∈  ℕ ) | 
						
							| 35 |  | nndivdvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑛  gcd  𝑁 )  ∈  ℕ )  →  ( ( 𝑛  gcd  𝑁 )  ∥  𝑁  ↔  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℕ ) ) | 
						
							| 36 | 34 25 35 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑛  gcd  𝑁 )  ∥  𝑁  ↔  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℕ ) ) | 
						
							| 37 | 33 36 | mpbid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℕ ) | 
						
							| 38 | 37 | nnzd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℤ ) | 
						
							| 39 |  | dvdsmulc | ⊢ ( ( ( 𝑛  gcd  𝑁 )  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℤ )  →  ( ( 𝑛  gcd  𝑁 )  ∥  𝑛  →  ( ( 𝑛  gcd  𝑁 )  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  ∥  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) ) | 
						
							| 40 | 32 16 38 39 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑛  gcd  𝑁 )  ∥  𝑛  →  ( ( 𝑛  gcd  𝑁 )  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  ∥  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) ) | 
						
							| 41 | 31 40 | mpd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑛  gcd  𝑁 )  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  ∥  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) | 
						
							| 42 | 28 41 | eqbrtrrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑁  ∥  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 ) | 
						
							| 44 | 4 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 45 | 44 7 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 46 |  | fof | ⊢ ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 )  →  ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 48 | 47 38 | ffvelcdmd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 49 |  | eqid | ⊢ ( .r ‘ 𝑌 )  =  ( .r ‘ 𝑌 ) | 
						
							| 50 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 51 | 3 5 49 50 | rrgeq0i | ⊢ ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( 0g ‘ 𝑌 )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 52 | 43 48 51 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( 0g ‘ 𝑌 )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 53 | 1 | zncrng | ⊢ ( 𝑁  ∈  ℕ0  →  𝑌  ∈  CRing ) | 
						
							| 54 | 4 53 | syl | ⊢ ( 𝑁  ∈  ℕ  →  𝑌  ∈  CRing ) | 
						
							| 55 |  | crngring | ⊢ ( 𝑌  ∈  CRing  →  𝑌  ∈  Ring ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝑁  ∈  ℕ  →  𝑌  ∈  Ring ) | 
						
							| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑌  ∈  Ring ) | 
						
							| 58 | 6 | zrhrhm | ⊢ ( 𝑌  ∈  Ring  →  ( ℤRHom ‘ 𝑌 )  ∈  ( ℤring  RingHom  𝑌 ) ) | 
						
							| 59 | 57 58 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ℤRHom ‘ 𝑌 )  ∈  ( ℤring  RingHom  𝑌 ) ) | 
						
							| 60 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 61 |  | zringmulr | ⊢  ·   =  ( .r ‘ ℤring ) | 
						
							| 62 | 60 61 49 | rhmmul | ⊢ ( ( ( ℤRHom ‘ 𝑌 )  ∈  ( ℤring  RingHom  𝑌 )  ∧  𝑛  ∈  ℤ  ∧  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℤ )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) ) | 
						
							| 63 | 59 16 38 62 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) ) | 
						
							| 64 | 63 | eqeq1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( 0g ‘ 𝑌 )  ↔  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 65 | 16 38 | zmulcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  ∈  ℤ ) | 
						
							| 66 | 1 6 50 | zndvds0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  ∈  ℤ )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) ) | 
						
							| 67 | 44 65 66 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) ) | 
						
							| 68 | 64 67 | bitr3d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) ) | 
						
							| 69 | 1 6 50 | zndvds0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℤ )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) | 
						
							| 70 | 44 38 69 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) | 
						
							| 71 | 52 68 70 | 3imtr3d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑁  ∥  ( 𝑛  ·  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) )  →  𝑁  ∥  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) ) | 
						
							| 72 | 42 71 | mpd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  𝑁  ∥  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) | 
						
							| 73 | 15 26 27 | divcan1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ·  ( 𝑛  gcd  𝑁 ) )  =  𝑁 ) | 
						
							| 74 | 37 | nncnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℂ ) | 
						
							| 75 | 74 | mulridd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ·  1 )  =  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) ) ) | 
						
							| 76 | 72 73 75 | 3brtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ·  ( 𝑛  gcd  𝑁 ) )  ∥  ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ·  1 ) ) | 
						
							| 77 |  | 1zzd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  1  ∈  ℤ ) | 
						
							| 78 | 37 | nnne0d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ≠  0 ) | 
						
							| 79 |  | dvdscmulr | ⊢ ( ( ( 𝑛  gcd  𝑁 )  ∈  ℤ  ∧  1  ∈  ℤ  ∧  ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ∈  ℤ  ∧  ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ≠  0 ) )  →  ( ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ·  ( 𝑛  gcd  𝑁 ) )  ∥  ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ·  1 )  ↔  ( 𝑛  gcd  𝑁 )  ∥  1 ) ) | 
						
							| 80 | 32 77 38 78 79 | syl112anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ·  ( 𝑛  gcd  𝑁 ) )  ∥  ( ( 𝑁  /  ( 𝑛  gcd  𝑁 ) )  ·  1 )  ↔  ( 𝑛  gcd  𝑁 )  ∥  1 ) ) | 
						
							| 81 | 76 80 | mpbid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  ∥  1 ) | 
						
							| 82 | 16 18 | gcdcld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  ∈  ℕ0 ) | 
						
							| 83 |  | dvds1 | ⊢ ( ( 𝑛  gcd  𝑁 )  ∈  ℕ0  →  ( ( 𝑛  gcd  𝑁 )  ∥  1  ↔  ( 𝑛  gcd  𝑁 )  =  1 ) ) | 
						
							| 84 | 82 83 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( 𝑛  gcd  𝑁 )  ∥  1  ↔  ( 𝑛  gcd  𝑁 )  =  1 ) ) | 
						
							| 85 | 81 84 | mpbid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( 𝑛  gcd  𝑁 )  =  1 ) | 
						
							| 86 | 1 2 6 | znunit | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝑈  ↔  ( 𝑛  gcd  𝑁 )  =  1 ) ) | 
						
							| 87 | 44 16 86 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝑈  ↔  ( 𝑛  gcd  𝑁 )  =  1 ) ) | 
						
							| 88 | 85 87 | mpbird | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  ∧  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝑈 ) | 
						
							| 89 | 88 | ex | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸  →  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝑈 ) ) | 
						
							| 90 |  | eleq1 | ⊢ ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  →  ( 𝑥  ∈  𝐸  ↔  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸 ) ) | 
						
							| 91 |  | eleq1 | ⊢ ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  →  ( 𝑥  ∈  𝑈  ↔  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝑈 ) ) | 
						
							| 92 | 90 91 | imbi12d | ⊢ ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  →  ( ( 𝑥  ∈  𝐸  →  𝑥  ∈  𝑈 )  ↔  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝐸  →  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  ∈  𝑈 ) ) ) | 
						
							| 93 | 89 92 | syl5ibrcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ℤ )  →  ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  →  ( 𝑥  ∈  𝐸  →  𝑥  ∈  𝑈 ) ) ) | 
						
							| 94 | 93 | rexlimdva | ⊢ ( 𝑁  ∈  ℕ  →  ( ∃ 𝑛  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  →  ( 𝑥  ∈  𝐸  →  𝑥  ∈  𝑈 ) ) ) | 
						
							| 95 | 94 | com23 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  𝐸  →  ( ∃ 𝑛  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 )  →  𝑥  ∈  𝑈 ) ) ) | 
						
							| 96 | 13 95 | mpdd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑥  ∈  𝐸  →  𝑥  ∈  𝑈 ) ) | 
						
							| 97 | 96 | ssrdv | ⊢ ( 𝑁  ∈  ℕ  →  𝐸  ⊆  𝑈 ) | 
						
							| 98 | 3 2 | unitrrg | ⊢ ( 𝑌  ∈  Ring  →  𝑈  ⊆  𝐸 ) | 
						
							| 99 | 56 98 | syl | ⊢ ( 𝑁  ∈  ℕ  →  𝑈  ⊆  𝐸 ) | 
						
							| 100 | 97 99 | eqssd | ⊢ ( 𝑁  ∈  ℕ  →  𝐸  =  𝑈 ) |