Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpen Unicode version

Theorem infxpen 8413
 Description: Every infinite ordinal is equinumerous to its Cartesian product. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation is a well-ordering of with the additional property that -initial segments of (where is a limit ordinal) are of cardinality at most . (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
infxpen

Proof of Theorem infxpen
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2457 . 2
2 eleq1 2529 . . . . 5
3 eleq1 2529 . . . . 5
42, 3bi2anan9 873 . . . 4
5 fveq2 5871 . . . . . . . 8
6 fveq2 5871 . . . . . . . 8
75, 6uneq12d 3658 . . . . . . 7
87adantr 465 . . . . . 6
9 fveq2 5871 . . . . . . . 8
10 fveq2 5871 . . . . . . . 8
119, 10uneq12d 3658 . . . . . . 7
1211adantl 466 . . . . . 6
138, 12eleq12d 2539 . . . . 5
147, 11eqeqan12d 2480 . . . . . 6
15 breq12 4457 . . . . . 6
1614, 15anbi12d 710 . . . . 5
1713, 16orbi12d 709 . . . 4
184, 17anbi12d 710 . . 3
1918cbvopabv 4521 . 2
20 eqid 2457 . 2
21 biid 236 . 2
22 eqid 2457 . 2
23 eqid 2457 . 2
241, 19, 20, 21, 22, 23infxpenlem 8412 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818  A.wral 2807  u.cun 3473  i^icin 3474  C_wss 3475   class class class wbr 4452  {copab 4509   con0 4883  X.cxp 5002  cfv 5593   com 6700   c1st 6798   c2nd 6799   cen 7533   csdm 7535  OrdIso`coi 7955 This theorem is referenced by:  xpomen  8414  infxpidm2  8415  alephreg  8978  cfpwsdom  8980  inar1  9174 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-inf2 8079 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-1o 7149  df-oadd 7153  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-fin 7540  df-oi 7956  df-card 8341
 Copyright terms: Public domain W3C validator