Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxpen | Unicode version |
Description: Every infinite ordinal is equinumerous to its Cartesian product. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation is a well-ordering of with the additional property that -initial segments of (where is a limit ordinal) are of cardinality at most . (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
infxpen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . 2 | |
2 | eleq1 2529 | . . . . 5 | |
3 | eleq1 2529 | . . . . 5 | |
4 | 2, 3 | bi2anan9 873 | . . . 4 |
5 | fveq2 5871 | . . . . . . . 8 | |
6 | fveq2 5871 | . . . . . . . 8 | |
7 | 5, 6 | uneq12d 3658 | . . . . . . 7 |
8 | 7 | adantr 465 | . . . . . 6 |
9 | fveq2 5871 | . . . . . . . 8 | |
10 | fveq2 5871 | . . . . . . . 8 | |
11 | 9, 10 | uneq12d 3658 | . . . . . . 7 |
12 | 11 | adantl 466 | . . . . . 6 |
13 | 8, 12 | eleq12d 2539 | . . . . 5 |
14 | 7, 11 | eqeqan12d 2480 | . . . . . 6 |
15 | breq12 4457 | . . . . . 6 | |
16 | 14, 15 | anbi12d 710 | . . . . 5 |
17 | 13, 16 | orbi12d 709 | . . . 4 |
18 | 4, 17 | anbi12d 710 | . . 3 |
19 | 18 | cbvopabv 4521 | . 2 |
20 | eqid 2457 | . 2 | |
21 | biid 236 | . 2 | |
22 | eqid 2457 | . 2 | |
23 | eqid 2457 | . 2 | |
24 | 1, 19, 20, 21, 22, 23 | infxpenlem 8412 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 u. cun 3473 i^i cin 3474
C_ wss 3475 class class class wbr 4452
{ copab 4509 con0 4883 X. cxp 5002 ` cfv 5593
com 6700
c1st 6798
c2nd 6799
cen 7533 csdm 7535 OrdIso coi 7955 |
This theorem is referenced by: xpomen 8414 infxpidm2 8415 alephreg 8978 cfpwsdom 8980 inar1 9174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-card 8341 |
Copyright terms: Public domain | W3C validator |