Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxpenc2lem1 | Unicode version |
Description: Lemma for infxpenc2 8420. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
infxpenc2.1 | |
infxpenc2.2 | |
infxpenc2.3 |
Ref | Expression |
---|---|
infxpenc2lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxpenc2.2 | . . . 4 | |
2 | 1 | r19.21bi 2826 | . . 3 |
3 | 2 | impr 619 | . 2 |
4 | simpr 461 | . . 3 | |
5 | infxpenc2.3 | . . . . . 6 | |
6 | oveq2 6304 | . . . . . . . . . 10 | |
7 | eqid 2457 | . . . . . . . . . 10 | |
8 | ovex 6324 | . . . . . . . . . 10 | |
9 | 6, 7, 8 | fvmpt 5956 | . . . . . . . . 9 |
10 | 9 | ad2antrl 727 | . . . . . . . 8 |
11 | f1ofo 5828 | . . . . . . . . . 10 | |
12 | 11 | ad2antll 728 | . . . . . . . . 9 |
13 | forn 5803 | . . . . . . . . 9 | |
14 | 12, 13 | syl 16 | . . . . . . . 8 |
15 | 10, 14 | eqtr4d 2501 | . . . . . . 7 |
16 | ovex 6324 | . . . . . . . . . . 11 | |
17 | 16 | a1ii 27 | . . . . . . . . . 10 |
18 | omelon 8084 | . . . . . . . . . . . . . 14 | |
19 | 1onn 7307 | . . . . . . . . . . . . . 14 | |
20 | ondif2 7171 | . . . . . . . . . . . . . 14 | |
21 | 18, 19, 20 | mpbir2an 920 | . . . . . . . . . . . . 13 |
22 | 21 | a1i 11 | . . . . . . . . . . . 12 |
23 | eldifi 3625 | . . . . . . . . . . . . 13 | |
24 | 23 | ad2antrl 727 | . . . . . . . . . . . 12 |
25 | eldifi 3625 | . . . . . . . . . . . . 13 | |
26 | 25 | ad2antll 728 | . . . . . . . . . . . 12 |
27 | oecan 7257 | . . . . . . . . . . . 12 | |
28 | 22, 24, 26, 27 | syl3anc 1228 | . . . . . . . . . . 11 |
29 | 28 | ex 434 | . . . . . . . . . 10 |
30 | 17, 29 | dom2lem 7575 | . . . . . . . . 9 |
31 | f1f1orn 5832 | . . . . . . . . 9 | |
32 | 30, 31 | syl 16 | . . . . . . . 8 |
33 | simprl 756 | . . . . . . . 8 | |
34 | f1ocnvfv 6184 | . . . . . . . 8 | |
35 | 32, 33, 34 | syl2anc 661 | . . . . . . 7 |
36 | 15, 35 | mpd 15 | . . . . . 6 |
37 | 5, 36 | syl5eq 2510 | . . . . 5 |
38 | 37 | eleq1d 2526 | . . . 4 |
39 | 37 | oveq2d 6312 | . . . . 5 |
40 | f1oeq3 5814 | . . . . 5 | |
41 | 39, 40 | syl 16 | . . . 4 |
42 | 38, 41 | anbi12d 710 | . . 3 |
43 | 4, 42 | mpbird 232 | . 2 |
44 | 3, 43 | rexlimddv 2953 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
\ cdif 3472 C_ wss 3475 e. cmpt 4510
con0 4883 `' ccnv 5003 ran crn 5005
-1-1-> wf1 5590
-onto-> wfo 5591
-1-1-onto-> wf1o 5592
` cfv 5593 (class class class)co 6296
com 6700
c1o 7142
c2o 7143
coe 7148 |
This theorem is referenced by: infxpenc2lem2 8418 infxpenc2lem2OLD 8422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 |
Copyright terms: Public domain | W3C validator |