Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxpenc2 | Unicode version |
Description: Existence form of infxpenc 8416. A "uniform" or "canonical" version of infxpen 8413, asserting the existence of a single function that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
infxpenc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfcom3c 8171 | . 2 | |
2 | df-2o 7150 | . . . . . . . 8 | |
3 | 2 | oveq2i 6307 | . . . . . . 7 |
4 | omelon 8084 | . . . . . . . 8 | |
5 | 1on 7156 | . . . . . . . 8 | |
6 | oesuc 7196 | . . . . . . . 8 | |
7 | 4, 5, 6 | mp2an 672 | . . . . . . 7 |
8 | oe1 7212 | . . . . . . . . 9 | |
9 | 4, 8 | ax-mp 5 | . . . . . . . 8 |
10 | 9 | oveq1i 6306 | . . . . . . 7 |
11 | 3, 7, 10 | 3eqtri 2490 | . . . . . 6 |
12 | omxpen 7639 | . . . . . . 7 | |
13 | 4, 4, 12 | mp2an 672 | . . . . . 6 |
14 | 11, 13 | eqbrtri 4471 | . . . . 5 |
15 | xpomen 8414 | . . . . 5 | |
16 | 14, 15 | entri 7589 | . . . 4 |
17 | 16 | a1i 11 | . . 3 |
18 | bren 7545 | . . 3 | |
19 | 17, 18 | sylib 196 | . 2 |
20 | eeanv 1988 | . . 3 | |
21 | simpl 457 | . . . . . 6 | |
22 | simprl 756 | . . . . . . 7 | |
23 | sseq2 3525 | . . . . . . . . 9 | |
24 | oveq2 6304 | . . . . . . . . . . . 12 | |
25 | f1oeq3 5814 | . . . . . . . . . . . 12 | |
26 | 24, 25 | syl 16 | . . . . . . . . . . 11 |
27 | 26 | cbvrexv 3085 | . . . . . . . . . 10 |
28 | fveq2 5871 | . . . . . . . . . . . . 13 | |
29 | f1oeq1 5812 | . . . . . . . . . . . . 13 | |
30 | 28, 29 | syl 16 | . . . . . . . . . . . 12 |
31 | f1oeq2 5813 | . . . . . . . . . . . 12 | |
32 | 30, 31 | bitrd 253 | . . . . . . . . . . 11 |
33 | 32 | rexbidv 2968 | . . . . . . . . . 10 |
34 | 27, 33 | syl5bb 257 | . . . . . . . . 9 |
35 | 23, 34 | imbi12d 320 | . . . . . . . 8 |
36 | 35 | cbvralv 3084 | . . . . . . 7 |
37 | 22, 36 | sylib 196 | . . . . . 6 |
38 | oveq2 6304 | . . . . . . . . 9 | |
39 | 38 | cbvmptv 4543 | . . . . . . . 8 |
40 | 39 | cnveqi 5182 | . . . . . . 7 |
41 | 40 | fveq1i 5872 | . . . . . 6 |
42 | 2on 7157 | . . . . . . . . . 10 | |
43 | peano1 6719 | . . . . . . . . . . 11 | |
44 | oen0 7254 | . . . . . . . . . . 11 | |
45 | 43, 44 | mpan2 671 | . . . . . . . . . 10 |
46 | 4, 42, 45 | mp2an 672 | . . . . . . . . 9 |
47 | eqid 2457 | . . . . . . . . . 10 | |
48 | 47 | fveqf1o 6205 | . . . . . . . . 9 |
49 | 46, 43, 48 | mp3an23 1316 | . . . . . . . 8 |
50 | 49 | ad2antll 728 | . . . . . . 7 |
51 | 50 | simpld 459 | . . . . . 6 |
52 | 50 | simprd 463 | . . . . . 6 |
53 | 21, 37, 41, 51, 52 | infxpenc2lem3 8419 | . . . . 5 |
54 | 53 | ex 434 | . . . 4 |
55 | 54 | exlimdvv 1725 | . . 3 |
56 | 20, 55 | syl5bir 218 | . 2 |
57 | 1, 19, 56 | mp2and 679 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 A. wral 2807 E. wrex 2808
\ cdif 3472 u. cun 3473 C_ wss 3475
c0 3784 { cpr 4031 <. cop 4035
class class class wbr 4452 e. cmpt 4510
cid 4795
con0 4883 suc csuc 4885 X. cxp 5002
`' ccnv 5003 ran crn 5005 |` cres 5006
o. ccom 5008 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
com 6700
c1o 7142
c2o 7143
comu 7147
coe 7148
cen 7533 |
This theorem is referenced by: pwfseq 9063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-supp 6919 df-recs 7061 df-rdg 7095 df-seqom 7132 df-1o 7149 df-2o 7150 df-oadd 7153 df-omul 7154 df-oexp 7155 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-fsupp 7850 df-oi 7956 df-cnf 8100 df-card 8341 |
Copyright terms: Public domain | W3C validator |