| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
| 2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
| 3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
| 4 |
|
oemapval.t |
|- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
| 5 |
|
oemapval.f |
|- ( ph -> F e. S ) |
| 6 |
|
oemapval.g |
|- ( ph -> G e. S ) |
| 7 |
|
oemapvali.r |
|- ( ph -> F T G ) |
| 8 |
|
oemapvali.x |
|- X = U. { c e. B | ( F ` c ) e. ( G ` c ) } |
| 9 |
|
cantnflem1.o |
|- O = OrdIso ( _E , ( G supp (/) ) ) |
| 10 |
|
simprr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( `' O ` X ) C_ u ) |
| 11 |
9
|
oicl |
|- Ord dom O |
| 12 |
|
ovexd |
|- ( ph -> ( G supp (/) ) e. _V ) |
| 13 |
1 2 3 9 6
|
cantnfcl |
|- ( ph -> ( _E We ( G supp (/) ) /\ dom O e. _om ) ) |
| 14 |
13
|
simpld |
|- ( ph -> _E We ( G supp (/) ) ) |
| 15 |
9
|
oiiso |
|- ( ( ( G supp (/) ) e. _V /\ _E We ( G supp (/) ) ) -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
| 16 |
12 14 15
|
syl2anc |
|- ( ph -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
| 17 |
|
isof1o |
|- ( O Isom _E , _E ( dom O , ( G supp (/) ) ) -> O : dom O -1-1-onto-> ( G supp (/) ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> O : dom O -1-1-onto-> ( G supp (/) ) ) |
| 19 |
|
f1ocnv |
|- ( O : dom O -1-1-onto-> ( G supp (/) ) -> `' O : ( G supp (/) ) -1-1-onto-> dom O ) |
| 20 |
|
f1of |
|- ( `' O : ( G supp (/) ) -1-1-onto-> dom O -> `' O : ( G supp (/) ) --> dom O ) |
| 21 |
18 19 20
|
3syl |
|- ( ph -> `' O : ( G supp (/) ) --> dom O ) |
| 22 |
1 2 3 4 5 6 7 8
|
cantnflem1a |
|- ( ph -> X e. ( G supp (/) ) ) |
| 23 |
21 22
|
ffvelcdmd |
|- ( ph -> ( `' O ` X ) e. dom O ) |
| 24 |
|
ordelon |
|- ( ( Ord dom O /\ ( `' O ` X ) e. dom O ) -> ( `' O ` X ) e. On ) |
| 25 |
11 23 24
|
sylancr |
|- ( ph -> ( `' O ` X ) e. On ) |
| 26 |
11
|
a1i |
|- ( ph -> Ord dom O ) |
| 27 |
|
ordelon |
|- ( ( Ord dom O /\ suc u e. dom O ) -> suc u e. On ) |
| 28 |
26 27
|
sylan |
|- ( ( ph /\ suc u e. dom O ) -> suc u e. On ) |
| 29 |
|
onsucb |
|- ( u e. On <-> suc u e. On ) |
| 30 |
28 29
|
sylibr |
|- ( ( ph /\ suc u e. dom O ) -> u e. On ) |
| 31 |
30
|
adantrr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> u e. On ) |
| 32 |
|
ontri1 |
|- ( ( ( `' O ` X ) e. On /\ u e. On ) -> ( ( `' O ` X ) C_ u <-> -. u e. ( `' O ` X ) ) ) |
| 33 |
25 31 32
|
syl2an2r |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( ( `' O ` X ) C_ u <-> -. u e. ( `' O ` X ) ) ) |
| 34 |
10 33
|
mpbid |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> -. u e. ( `' O ` X ) ) |
| 35 |
16
|
adantr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> O Isom _E , _E ( dom O , ( G supp (/) ) ) ) |
| 36 |
|
ordtr |
|- ( Ord dom O -> Tr dom O ) |
| 37 |
11 36
|
mp1i |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> Tr dom O ) |
| 38 |
|
simprl |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> suc u e. dom O ) |
| 39 |
|
trsuc |
|- ( ( Tr dom O /\ suc u e. dom O ) -> u e. dom O ) |
| 40 |
37 38 39
|
syl2anc |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> u e. dom O ) |
| 41 |
23
|
adantr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( `' O ` X ) e. dom O ) |
| 42 |
|
isorel |
|- ( ( O Isom _E , _E ( dom O , ( G supp (/) ) ) /\ ( u e. dom O /\ ( `' O ` X ) e. dom O ) ) -> ( u _E ( `' O ` X ) <-> ( O ` u ) _E ( O ` ( `' O ` X ) ) ) ) |
| 43 |
35 40 41 42
|
syl12anc |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u _E ( `' O ` X ) <-> ( O ` u ) _E ( O ` ( `' O ` X ) ) ) ) |
| 44 |
|
fvex |
|- ( `' O ` X ) e. _V |
| 45 |
44
|
epeli |
|- ( u _E ( `' O ` X ) <-> u e. ( `' O ` X ) ) |
| 46 |
|
fvex |
|- ( O ` ( `' O ` X ) ) e. _V |
| 47 |
46
|
epeli |
|- ( ( O ` u ) _E ( O ` ( `' O ` X ) ) <-> ( O ` u ) e. ( O ` ( `' O ` X ) ) ) |
| 48 |
43 45 47
|
3bitr3g |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u e. ( `' O ` X ) <-> ( O ` u ) e. ( O ` ( `' O ` X ) ) ) ) |
| 49 |
|
f1ocnvfv2 |
|- ( ( O : dom O -1-1-onto-> ( G supp (/) ) /\ X e. ( G supp (/) ) ) -> ( O ` ( `' O ` X ) ) = X ) |
| 50 |
18 22 49
|
syl2anc |
|- ( ph -> ( O ` ( `' O ` X ) ) = X ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` ( `' O ` X ) ) = X ) |
| 52 |
51
|
eleq2d |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( ( O ` u ) e. ( O ` ( `' O ` X ) ) <-> ( O ` u ) e. X ) ) |
| 53 |
48 52
|
bitrd |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( u e. ( `' O ` X ) <-> ( O ` u ) e. X ) ) |
| 54 |
34 53
|
mtbid |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> -. ( O ` u ) e. X ) |
| 55 |
1 2 3 4 5 6 7 8
|
oemapvali |
|- ( ph -> ( X e. B /\ ( F ` X ) e. ( G ` X ) /\ A. w e. B ( X e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
| 56 |
55
|
simp1d |
|- ( ph -> X e. B ) |
| 57 |
|
onelon |
|- ( ( B e. On /\ X e. B ) -> X e. On ) |
| 58 |
3 56 57
|
syl2anc |
|- ( ph -> X e. On ) |
| 59 |
|
suppssdm |
|- ( G supp (/) ) C_ dom G |
| 60 |
1 2 3
|
cantnfs |
|- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 61 |
6 60
|
mpbid |
|- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 62 |
61
|
simpld |
|- ( ph -> G : B --> A ) |
| 63 |
59 62
|
fssdm |
|- ( ph -> ( G supp (/) ) C_ B ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( G supp (/) ) C_ B ) |
| 65 |
9
|
oif |
|- O : dom O --> ( G supp (/) ) |
| 66 |
65
|
ffvelcdmi |
|- ( u e. dom O -> ( O ` u ) e. ( G supp (/) ) ) |
| 67 |
40 66
|
syl |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. ( G supp (/) ) ) |
| 68 |
64 67
|
sseldd |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. B ) |
| 69 |
|
onelon |
|- ( ( B e. On /\ ( O ` u ) e. B ) -> ( O ` u ) e. On ) |
| 70 |
3 68 69
|
syl2an2r |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( O ` u ) e. On ) |
| 71 |
|
ontri1 |
|- ( ( X e. On /\ ( O ` u ) e. On ) -> ( X C_ ( O ` u ) <-> -. ( O ` u ) e. X ) ) |
| 72 |
58 70 71
|
syl2an2r |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> ( X C_ ( O ` u ) <-> -. ( O ` u ) e. X ) ) |
| 73 |
54 72
|
mpbird |
|- ( ( ph /\ ( suc u e. dom O /\ ( `' O ` X ) C_ u ) ) -> X C_ ( O ` u ) ) |