Metamath Proof Explorer


Theorem cdleme35fnpq

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 19-Mar-2013)

Ref Expression
Hypotheses cdleme35.l
|- .<_ = ( le ` K )
cdleme35.j
|- .\/ = ( join ` K )
cdleme35.m
|- ./\ = ( meet ` K )
cdleme35.a
|- A = ( Atoms ` K )
cdleme35.h
|- H = ( LHyp ` K )
cdleme35.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme35.f
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )
Assertion cdleme35fnpq
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> -. F .<_ ( P .\/ Q ) )

Proof

Step Hyp Ref Expression
1 cdleme35.l
 |-  .<_ = ( le ` K )
2 cdleme35.j
 |-  .\/ = ( join ` K )
3 cdleme35.m
 |-  ./\ = ( meet ` K )
4 cdleme35.a
 |-  A = ( Atoms ` K )
5 cdleme35.h
 |-  H = ( LHyp ` K )
6 cdleme35.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 cdleme35.f
 |-  F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )
8 simp3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> -. R .<_ ( P .\/ Q ) )
9 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) )
10 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. A )
11 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q e. A )
12 1 2 3 4 5 6 cdlemeulpq
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) )
13 9 10 11 12 syl12anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> U .<_ ( P .\/ Q ) )
14 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. HL )
15 14 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. Lat )
16 simp2rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A )
17 eqid
 |-  ( Base ` K ) = ( Base ` K )
18 1 2 3 4 5 6 7 17 cdleme1b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> F e. ( Base ` K ) )
19 9 10 11 16 18 syl13anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> F e. ( Base ` K ) )
20 1 2 3 4 5 6 17 cdleme0aa
 |-  ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) -> U e. ( Base ` K ) )
21 9 10 11 20 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> U e. ( Base ` K ) )
22 17 2 4 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )
23 14 10 11 22 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) e. ( Base ` K ) )
24 17 1 2 latjle12
 |-  ( ( K e. Lat /\ ( F e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( F .<_ ( P .\/ Q ) /\ U .<_ ( P .\/ Q ) ) <-> ( F .\/ U ) .<_ ( P .\/ Q ) ) )
25 15 19 21 23 24 syl13anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( F .<_ ( P .\/ Q ) /\ U .<_ ( P .\/ Q ) ) <-> ( F .\/ U ) .<_ ( P .\/ Q ) ) )
26 25 biimpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( F .<_ ( P .\/ Q ) /\ U .<_ ( P .\/ Q ) ) -> ( F .\/ U ) .<_ ( P .\/ Q ) ) )
27 13 26 mpan2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F .<_ ( P .\/ Q ) -> ( F .\/ U ) .<_ ( P .\/ Q ) ) )
28 17 4 atbase
 |-  ( R e. A -> R e. ( Base ` K ) )
29 16 28 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. ( Base ` K ) )
30 17 1 2 latlej1
 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> R .<_ ( R .\/ U ) )
31 15 29 21 30 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R .<_ ( R .\/ U ) )
32 1 2 3 4 5 6 7 cdleme35a
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F .\/ U ) = ( R .\/ U ) )
33 31 32 breqtrrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R .<_ ( F .\/ U ) )
34 17 2 latjcl
 |-  ( ( K e. Lat /\ F e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( F .\/ U ) e. ( Base ` K ) )
35 15 19 21 34 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F .\/ U ) e. ( Base ` K ) )
36 17 1 lattr
 |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ ( F .\/ U ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( F .\/ U ) /\ ( F .\/ U ) .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) ) )
37 15 29 35 23 36 syl13anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( R .<_ ( F .\/ U ) /\ ( F .\/ U ) .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) ) )
38 33 37 mpand
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( F .\/ U ) .<_ ( P .\/ Q ) -> R .<_ ( P .\/ Q ) ) )
39 27 38 syld
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F .<_ ( P .\/ Q ) -> R .<_ ( P .\/ Q ) ) )
40 8 39 mtod
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> -. F .<_ ( P .\/ Q ) )