| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknonwwlknonb.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isclwwlknon |
|- ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) |
| 3 |
|
3anan32 |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) |
| 4 |
|
s1eq |
|- ( ( W ` 0 ) = X -> <" ( W ` 0 ) "> = <" X "> ) |
| 5 |
4
|
oveq2d |
|- ( ( W ` 0 ) = X -> ( W ++ <" ( W ` 0 ) "> ) = ( W ++ <" X "> ) ) |
| 6 |
5
|
eleq1d |
|- ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) <-> ( W ++ <" X "> ) e. ( N WWalksN G ) ) ) |
| 7 |
6
|
biimpac |
|- ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ++ <" X "> ) e. ( N WWalksN G ) ) |
| 8 |
7
|
adantl |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W ++ <" X "> ) e. ( N WWalksN G ) ) |
| 9 |
|
fvex |
|- ( W ` 0 ) e. _V |
| 10 |
|
eleq1 |
|- ( ( W ` 0 ) = X -> ( ( W ` 0 ) e. _V <-> X e. _V ) ) |
| 11 |
9 10
|
mpbii |
|- ( ( W ` 0 ) = X -> X e. _V ) |
| 12 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 13 |
1 12
|
wwlknp |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 14 |
|
simprrl |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> W e. Word V ) |
| 15 |
|
simpl |
|- ( ( W e. Word V /\ N e. NN ) -> W e. Word V ) |
| 16 |
15
|
anim2i |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( X e. _V /\ W e. Word V ) ) |
| 17 |
16
|
ancomd |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. _V ) ) |
| 18 |
|
ccats1alpha |
|- ( ( W e. Word V /\ X e. _V ) -> ( ( W ++ <" X "> ) e. Word V <-> ( W e. Word V /\ X e. V ) ) ) |
| 19 |
17 18
|
syl |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) e. Word V <-> ( W e. Word V /\ X e. V ) ) ) |
| 20 |
|
simpr |
|- ( ( W e. Word V /\ X e. V ) -> X e. V ) |
| 21 |
19 20
|
biimtrdi |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) e. Word V -> X e. V ) ) |
| 22 |
21
|
com12 |
|- ( ( W ++ <" X "> ) e. Word V -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> X e. V ) ) |
| 23 |
22
|
adantr |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> X e. V ) ) |
| 24 |
23
|
imp |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> X e. V ) |
| 25 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 26 |
|
ccatws1lenp1b |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |
| 27 |
25 26
|
sylan2 |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) |
| 28 |
27
|
biimpd |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) |
| 29 |
28
|
adantl |
|- ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) |
| 30 |
29
|
com12 |
|- ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) ) |
| 31 |
30
|
adantl |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) ) |
| 32 |
31
|
imp |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> ( # ` W ) = N ) |
| 33 |
32
|
eqcomd |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> N = ( # ` W ) ) |
| 34 |
14 24 33
|
3jca |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) |
| 35 |
34
|
ex |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) |
| 36 |
35
|
3adant3 |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) |
| 37 |
13 36
|
syl |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) |
| 38 |
37
|
expd |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( X e. _V -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) |
| 39 |
11 38
|
syl5com |
|- ( ( W ` 0 ) = X -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) |
| 40 |
6 39
|
sylbid |
|- ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) |
| 41 |
40
|
com13 |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) -> ( ( W ` 0 ) = X -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) |
| 42 |
41
|
imp32 |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) |
| 43 |
|
ccats1val2 |
|- ( ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
| 44 |
42 43
|
syl |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) |
| 45 |
|
ccat1st1st |
|- ( W e. Word V -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
| 46 |
45
|
adantr |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
| 47 |
5
|
fveq1d |
|- ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( ( W ++ <" X "> ) ` 0 ) ) |
| 48 |
47
|
eqeq1d |
|- ( ( W ` 0 ) = X -> ( ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) |
| 49 |
48
|
adantl |
|- ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) |
| 50 |
46 49
|
syl5ibcom |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) |
| 51 |
50
|
imp |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) |
| 52 |
|
simprr |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W ` 0 ) = X ) |
| 53 |
51 52
|
eqtrd |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` 0 ) = X ) |
| 54 |
8 44 53
|
jca31 |
|- ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) |
| 55 |
54
|
ex |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) ) |
| 56 |
|
simprl |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> W e. Word V ) |
| 57 |
27
|
biimpcd |
|- ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( ( W e. Word V /\ N e. NN ) -> ( # ` W ) = N ) ) |
| 58 |
57
|
adantl |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( # ` W ) = N ) ) |
| 59 |
58
|
imp |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) |
| 60 |
59
|
eqcomd |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> N = ( # ` W ) ) |
| 61 |
56 60
|
jca |
|- ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ N = ( # ` W ) ) ) |
| 62 |
61
|
ex |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) |
| 63 |
62
|
3adant3 |
|- ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) |
| 64 |
13 63
|
syl |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) |
| 65 |
64
|
imp |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ N = ( # ` W ) ) ) |
| 66 |
|
eleq1 |
|- ( N = ( # ` W ) -> ( N e. NN <-> ( # ` W ) e. NN ) ) |
| 67 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN ) |
| 68 |
67
|
biimpri |
|- ( ( # ` W ) e. NN -> 0 e. ( 0 ..^ ( # ` W ) ) ) |
| 69 |
66 68
|
biimtrdi |
|- ( N = ( # ` W ) -> ( N e. NN -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 70 |
69
|
com12 |
|- ( N e. NN -> ( N = ( # ` W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 71 |
70
|
ad2antll |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( N = ( # ` W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 72 |
71
|
anim2d |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W e. Word V /\ N = ( # ` W ) ) -> ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) ) ) |
| 73 |
65 72
|
mpd |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) ) |
| 74 |
|
ccats1val1 |
|- ( ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) |
| 75 |
73 74
|
syl |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) |
| 76 |
75
|
eqeq1d |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X <-> ( W ` 0 ) = X ) ) |
| 77 |
76
|
biimpd |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) |
| 78 |
77
|
ex |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) ) |
| 79 |
78
|
adantr |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) ) |
| 80 |
79
|
com3r |
|- ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( W ` 0 ) = X ) ) ) |
| 81 |
80
|
impcom |
|- ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( W ` 0 ) = X ) ) |
| 82 |
6
|
biimparc |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) ) |
| 83 |
|
simpr |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X ) |
| 84 |
82 83
|
jca |
|- ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) |
| 85 |
84
|
ex |
|- ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
| 87 |
81 86
|
syldc |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
| 88 |
55 87
|
impbid |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) <-> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) ) |
| 89 |
3 88
|
bitr4id |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
| 90 |
1
|
clwwlknwwlksnb |
|- ( ( W e. Word V /\ N e. NN ) -> ( W e. ( N ClWWalksN G ) <-> ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) ) ) |
| 91 |
90
|
anbi1d |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
| 92 |
89 91
|
bitr4d |
|- ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) ) |
| 93 |
2 92
|
bitr4id |
|- ( ( W e. Word V /\ N e. NN ) -> ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) ) ) |
| 94 |
|
wwlknon |
|- ( ( W ++ <" X "> ) e. ( X ( N WWalksNOn G ) X ) <-> ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) ) |
| 95 |
93 94
|
bitr4di |
|- ( ( W e. Word V /\ N e. NN ) -> ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W ++ <" X "> ) e. ( X ( N WWalksNOn G ) X ) ) ) |