| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknonwwlknonb.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isclwwlknon |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) | 
						
							| 3 |  | 3anan32 |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) | 
						
							| 4 |  | s1eq |  |-  ( ( W ` 0 ) = X -> <" ( W ` 0 ) "> = <" X "> ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( W ` 0 ) = X -> ( W ++ <" ( W ` 0 ) "> ) = ( W ++ <" X "> ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) <-> ( W ++ <" X "> ) e. ( N WWalksN G ) ) ) | 
						
							| 7 | 6 | biimpac |  |-  ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ++ <" X "> ) e. ( N WWalksN G ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W ++ <" X "> ) e. ( N WWalksN G ) ) | 
						
							| 9 |  | fvex |  |-  ( W ` 0 ) e. _V | 
						
							| 10 |  | eleq1 |  |-  ( ( W ` 0 ) = X -> ( ( W ` 0 ) e. _V <-> X e. _V ) ) | 
						
							| 11 | 9 10 | mpbii |  |-  ( ( W ` 0 ) = X -> X e. _V ) | 
						
							| 12 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 13 | 1 12 | wwlknp |  |-  ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 14 |  | simprrl |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> W e. Word V ) | 
						
							| 15 |  | simpl |  |-  ( ( W e. Word V /\ N e. NN ) -> W e. Word V ) | 
						
							| 16 | 15 | anim2i |  |-  ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( X e. _V /\ W e. Word V ) ) | 
						
							| 17 | 16 | ancomd |  |-  ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. _V ) ) | 
						
							| 18 |  | ccats1alpha |  |-  ( ( W e. Word V /\ X e. _V ) -> ( ( W ++ <" X "> ) e. Word V <-> ( W e. Word V /\ X e. V ) ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) e. Word V <-> ( W e. Word V /\ X e. V ) ) ) | 
						
							| 20 |  | simpr |  |-  ( ( W e. Word V /\ X e. V ) -> X e. V ) | 
						
							| 21 | 19 20 | biimtrdi |  |-  ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) e. Word V -> X e. V ) ) | 
						
							| 22 | 21 | com12 |  |-  ( ( W ++ <" X "> ) e. Word V -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> X e. V ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> X e. V ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> X e. V ) | 
						
							| 25 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 26 |  | ccatws1lenp1b |  |-  ( ( W e. Word V /\ N e. NN0 ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) | 
						
							| 27 | 25 26 | sylan2 |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) <-> ( # ` W ) = N ) ) | 
						
							| 28 | 27 | biimpd |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( # ` W ) = N ) ) | 
						
							| 30 | 29 | com12 |  |-  ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> ( # ` W ) = N ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> N = ( # ` W ) ) | 
						
							| 34 | 14 24 33 | 3jca |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) | 
						
							| 35 | 34 | ex |  |-  ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) | 
						
							| 36 | 35 | 3adant3 |  |-  ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) | 
						
							| 37 | 13 36 | syl |  |-  ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( X e. _V /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) | 
						
							| 38 | 37 | expd |  |-  ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( X e. _V -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) | 
						
							| 39 | 11 38 | syl5com |  |-  ( ( W ` 0 ) = X -> ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) | 
						
							| 40 | 6 39 | sylbid |  |-  ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) | 
						
							| 41 | 40 | com13 |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) -> ( ( W ` 0 ) = X -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) ) ) | 
						
							| 42 | 41 | imp32 |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) ) | 
						
							| 43 |  | ccats1val2 |  |-  ( ( W e. Word V /\ X e. V /\ N = ( # ` W ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` N ) = X ) | 
						
							| 45 |  | ccat1st1st |  |-  ( W e. Word V -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 47 | 5 | fveq1d |  |-  ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( ( W ++ <" X "> ) ` 0 ) ) | 
						
							| 48 | 47 | eqeq1d |  |-  ( ( W ` 0 ) = X -> ( ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) | 
						
							| 50 | 46 49 | syl5ibcom |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) ) | 
						
							| 51 | 50 | imp |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 52 |  | simprr |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( W ` 0 ) = X ) | 
						
							| 53 | 51 52 | eqtrd |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( W ++ <" X "> ) ` 0 ) = X ) | 
						
							| 54 | 8 44 53 | jca31 |  |-  ( ( ( W e. Word V /\ N e. NN ) /\ ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) | 
						
							| 55 | 54 | ex |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) ) | 
						
							| 56 |  | simprl |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> W e. Word V ) | 
						
							| 57 | 27 | biimpcd |  |-  ( ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) -> ( ( W e. Word V /\ N e. NN ) -> ( # ` W ) = N ) ) | 
						
							| 58 | 57 | adantl |  |-  ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( # ` W ) = N ) ) | 
						
							| 59 | 58 | imp |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> ( # ` W ) = N ) | 
						
							| 60 | 59 | eqcomd |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> N = ( # ` W ) ) | 
						
							| 61 | 56 60 | jca |  |-  ( ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ N = ( # ` W ) ) ) | 
						
							| 62 | 61 | ex |  |-  ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) | 
						
							| 63 | 62 | 3adant3 |  |-  ( ( ( W ++ <" X "> ) e. Word V /\ ( # ` ( W ++ <" X "> ) ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( ( W ++ <" X "> ) ` i ) , ( ( W ++ <" X "> ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) | 
						
							| 64 | 13 63 | syl |  |-  ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( W e. Word V /\ N = ( # ` W ) ) ) ) | 
						
							| 65 | 64 | imp |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ N = ( # ` W ) ) ) | 
						
							| 66 |  | eleq1 |  |-  ( N = ( # ` W ) -> ( N e. NN <-> ( # ` W ) e. NN ) ) | 
						
							| 67 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN ) | 
						
							| 68 | 67 | biimpri |  |-  ( ( # ` W ) e. NN -> 0 e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 69 | 66 68 | biimtrdi |  |-  ( N = ( # ` W ) -> ( N e. NN -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 70 | 69 | com12 |  |-  ( N e. NN -> ( N = ( # ` W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 71 | 70 | ad2antll |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( N = ( # ` W ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 72 | 71 | anim2d |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W e. Word V /\ N = ( # ` W ) ) -> ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) ) ) | 
						
							| 73 | 65 72 | mpd |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 74 |  | ccats1val1 |  |-  ( ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 76 | 75 | eqeq1d |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X <-> ( W ` 0 ) = X ) ) | 
						
							| 77 | 76 | biimpd |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W e. Word V /\ N e. NN ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) | 
						
							| 78 | 77 | ex |  |-  ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( W ` 0 ) = X ) ) ) | 
						
							| 80 | 79 | com3r |  |-  ( ( ( W ++ <" X "> ) ` 0 ) = X -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( W ` 0 ) = X ) ) ) | 
						
							| 81 | 80 | impcom |  |-  ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W e. Word V /\ N e. NN ) -> ( W ` 0 ) = X ) ) | 
						
							| 82 | 6 | biimparc |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) ) | 
						
							| 83 |  | simpr |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( W ` 0 ) = X ) | 
						
							| 84 | 82 83 | jca |  |-  ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) | 
						
							| 85 | 84 | ex |  |-  ( ( W ++ <" X "> ) e. ( N WWalksN G ) -> ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 86 | 85 | ad2antrr |  |-  ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W ` 0 ) = X -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 87 | 81 86 | syldc |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) -> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 88 | 55 87 | impbid |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) <-> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` N ) = X ) /\ ( ( W ++ <" X "> ) ` 0 ) = X ) ) ) | 
						
							| 89 | 3 88 | bitr4id |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 90 | 1 | clwwlknwwlksnb |  |-  ( ( W e. Word V /\ N e. NN ) -> ( W e. ( N ClWWalksN G ) <-> ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) ) ) | 
						
							| 91 | 90 | anbi1d |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) <-> ( ( W ++ <" ( W ` 0 ) "> ) e. ( N WWalksN G ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 92 | 89 91 | bitr4d |  |-  ( ( W e. Word V /\ N e. NN ) -> ( ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) ) | 
						
							| 93 | 2 92 | bitr4id |  |-  ( ( W e. Word V /\ N e. NN ) -> ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) ) ) | 
						
							| 94 |  | wwlknon |  |-  ( ( W ++ <" X "> ) e. ( X ( N WWalksNOn G ) X ) <-> ( ( W ++ <" X "> ) e. ( N WWalksN G ) /\ ( ( W ++ <" X "> ) ` 0 ) = X /\ ( ( W ++ <" X "> ) ` N ) = X ) ) | 
						
							| 95 | 93 94 | bitr4di |  |-  ( ( W e. Word V /\ N e. NN ) -> ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W ++ <" X "> ) e. ( X ( N WWalksNOn G ) X ) ) ) |