Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknonwwlknonb.v |
|
2 |
|
isclwwlknon |
|
3 |
|
3anan32 |
|
4 |
|
s1eq |
|
5 |
4
|
oveq2d |
|
6 |
5
|
eleq1d |
|
7 |
6
|
biimpac |
|
8 |
7
|
adantl |
|
9 |
|
fvex |
|
10 |
|
eleq1 |
|
11 |
9 10
|
mpbii |
|
12 |
|
eqid |
|
13 |
1 12
|
wwlknp |
|
14 |
|
simprrl |
|
15 |
|
simpl |
|
16 |
15
|
anim2i |
|
17 |
16
|
ancomd |
|
18 |
|
ccats1alpha |
|
19 |
17 18
|
syl |
|
20 |
|
simpr |
|
21 |
19 20
|
syl6bi |
|
22 |
21
|
com12 |
|
23 |
22
|
adantr |
|
24 |
23
|
imp |
|
25 |
|
nnnn0 |
|
26 |
|
ccatws1lenp1b |
|
27 |
25 26
|
sylan2 |
|
28 |
27
|
biimpd |
|
29 |
28
|
adantl |
|
30 |
29
|
com12 |
|
31 |
30
|
adantl |
|
32 |
31
|
imp |
|
33 |
32
|
eqcomd |
|
34 |
14 24 33
|
3jca |
|
35 |
34
|
ex |
|
36 |
35
|
3adant3 |
|
37 |
13 36
|
syl |
|
38 |
37
|
expd |
|
39 |
11 38
|
syl5com |
|
40 |
6 39
|
sylbid |
|
41 |
40
|
com13 |
|
42 |
41
|
imp32 |
|
43 |
|
ccats1val2 |
|
44 |
42 43
|
syl |
|
45 |
|
ccat1st1st |
|
46 |
45
|
adantr |
|
47 |
5
|
fveq1d |
|
48 |
47
|
eqeq1d |
|
49 |
48
|
adantl |
|
50 |
46 49
|
syl5ibcom |
|
51 |
50
|
imp |
|
52 |
|
simprr |
|
53 |
51 52
|
eqtrd |
|
54 |
8 44 53
|
jca31 |
|
55 |
54
|
ex |
|
56 |
|
simprl |
|
57 |
27
|
biimpcd |
|
58 |
57
|
adantl |
|
59 |
58
|
imp |
|
60 |
59
|
eqcomd |
|
61 |
56 60
|
jca |
|
62 |
61
|
ex |
|
63 |
62
|
3adant3 |
|
64 |
13 63
|
syl |
|
65 |
64
|
imp |
|
66 |
|
eleq1 |
|
67 |
|
lbfzo0 |
|
68 |
67
|
biimpri |
|
69 |
66 68
|
syl6bi |
|
70 |
69
|
com12 |
|
71 |
70
|
ad2antll |
|
72 |
71
|
anim2d |
|
73 |
65 72
|
mpd |
|
74 |
|
ccats1val1 |
|
75 |
73 74
|
syl |
|
76 |
75
|
eqeq1d |
|
77 |
76
|
biimpd |
|
78 |
77
|
ex |
|
79 |
78
|
adantr |
|
80 |
79
|
com3r |
|
81 |
80
|
impcom |
|
82 |
6
|
biimparc |
|
83 |
|
simpr |
|
84 |
82 83
|
jca |
|
85 |
84
|
ex |
|
86 |
85
|
ad2antrr |
|
87 |
81 86
|
syldc |
|
88 |
55 87
|
impbid |
|
89 |
3 88
|
bitr4id |
|
90 |
1
|
clwwlknwwlksnb |
|
91 |
90
|
anbi1d |
|
92 |
89 91
|
bitr4d |
|
93 |
2 92
|
bitr4id |
|
94 |
|
wwlknon |
|
95 |
93 94
|
bitr4di |
|