| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cply1mul.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
cply1mul.b |
|- B = ( Base ` P ) |
| 3 |
|
cply1mul.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
cply1mul.m |
|- .X. = ( .r ` P ) |
| 5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 6 |
1 4 5 2
|
coe1mul |
|- ( ( R e. Ring /\ F e. B /\ G e. B ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
| 7 |
6
|
3expb |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
| 8 |
7
|
adantr |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
| 9 |
8
|
adantr |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( coe1 ` ( F .X. G ) ) = ( s e. NN0 |-> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) ) ) |
| 10 |
|
oveq2 |
|- ( s = n -> ( 0 ... s ) = ( 0 ... n ) ) |
| 11 |
|
fvoveq1 |
|- ( s = n -> ( ( coe1 ` G ) ` ( s - k ) ) = ( ( coe1 ` G ) ` ( n - k ) ) ) |
| 12 |
11
|
oveq2d |
|- ( s = n -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) |
| 13 |
10 12
|
mpteq12dv |
|- ( s = n -> ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) = ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) |
| 14 |
13
|
oveq2d |
|- ( s = n -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
| 15 |
14
|
adantl |
|- ( ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) /\ s = n ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( s - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
| 16 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 17 |
16
|
adantl |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> n e. NN0 ) |
| 18 |
|
ovexd |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) e. _V ) |
| 19 |
9 15 17 18
|
fvmptd |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( ( coe1 ` ( F .X. G ) ) ` n ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) ) |
| 20 |
|
r19.26 |
|- ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) <-> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) ) |
| 21 |
|
oveq2 |
|- ( k = 0 -> ( n - k ) = ( n - 0 ) ) |
| 22 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 23 |
22
|
subid1d |
|- ( n e. NN -> ( n - 0 ) = n ) |
| 24 |
23
|
adantr |
|- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( n - 0 ) = n ) |
| 25 |
21 24
|
sylan9eqr |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( n - k ) = n ) |
| 26 |
|
simpll |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> n e. NN ) |
| 27 |
25 26
|
eqeltrd |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( n - k ) e. NN ) |
| 28 |
|
fveqeq2 |
|- ( c = ( n - k ) -> ( ( ( coe1 ` G ) ` c ) = .0. <-> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
| 29 |
28
|
rspcv |
|- ( ( n - k ) e. NN -> ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
| 30 |
27 29
|
syl |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) ) |
| 31 |
|
oveq2 |
|- ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) ) |
| 32 |
|
simpll |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> R e. Ring ) |
| 33 |
|
simprl |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> F e. B ) |
| 34 |
|
elfznn0 |
|- ( k e. ( 0 ... n ) -> k e. NN0 ) |
| 35 |
34
|
adantl |
|- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> k e. NN0 ) |
| 36 |
35
|
adantr |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> k e. NN0 ) |
| 37 |
|
eqid |
|- ( coe1 ` F ) = ( coe1 ` F ) |
| 38 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 39 |
37 2 1 38
|
coe1fvalcl |
|- ( ( F e. B /\ k e. NN0 ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) |
| 40 |
33 36 39
|
syl2an |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) |
| 41 |
38 5 3
|
ringrz |
|- ( ( R e. Ring /\ ( ( coe1 ` F ) ` k ) e. ( Base ` R ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) = .0. ) |
| 42 |
32 40 41
|
syl2anc |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) .0. ) = .0. ) |
| 43 |
31 42
|
sylan9eqr |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) /\ ( ( coe1 ` G ) ` ( n - k ) ) = .0. ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 44 |
43
|
ex |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
| 45 |
44
|
expcom |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 46 |
45
|
com23 |
|- ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( ( coe1 ` G ) ` ( n - k ) ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 47 |
30 46
|
syldc |
|- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( ( n e. NN /\ k e. ( 0 ... n ) ) /\ k = 0 ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 48 |
47
|
expd |
|- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 49 |
48
|
com24 |
|- ( A. c e. NN ( ( coe1 ` G ) ` c ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 50 |
49
|
adantl |
|- ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 51 |
50
|
com13 |
|- ( k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 52 |
|
neqne |
|- ( -. k = 0 -> k =/= 0 ) |
| 53 |
52 34
|
anim12ci |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( k e. NN0 /\ k =/= 0 ) ) |
| 54 |
|
elnnne0 |
|- ( k e. NN <-> ( k e. NN0 /\ k =/= 0 ) ) |
| 55 |
53 54
|
sylibr |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> k e. NN ) |
| 56 |
|
fveqeq2 |
|- ( c = k -> ( ( ( coe1 ` F ) ` c ) = .0. <-> ( ( coe1 ` F ) ` k ) = .0. ) ) |
| 57 |
56
|
rspcv |
|- ( k e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( coe1 ` F ) ` k ) = .0. ) ) |
| 58 |
55 57
|
syl |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( coe1 ` F ) ` k ) = .0. ) ) |
| 59 |
|
oveq1 |
|- ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) |
| 60 |
|
simpll |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> R e. Ring ) |
| 61 |
2
|
eleq2i |
|- ( G e. B <-> G e. ( Base ` P ) ) |
| 62 |
61
|
biimpi |
|- ( G e. B -> G e. ( Base ` P ) ) |
| 63 |
62
|
adantl |
|- ( ( F e. B /\ G e. B ) -> G e. ( Base ` P ) ) |
| 64 |
63
|
adantl |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> G e. ( Base ` P ) ) |
| 65 |
|
fznn0sub |
|- ( k e. ( 0 ... n ) -> ( n - k ) e. NN0 ) |
| 66 |
|
eqid |
|- ( coe1 ` G ) = ( coe1 ` G ) |
| 67 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 68 |
66 67 1 38
|
coe1fvalcl |
|- ( ( G e. ( Base ` P ) /\ ( n - k ) e. NN0 ) -> ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) |
| 69 |
64 65 68
|
syl2an |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) |
| 70 |
38 5 3
|
ringlz |
|- ( ( R e. Ring /\ ( ( coe1 ` G ) ` ( n - k ) ) e. ( Base ` R ) ) -> ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 71 |
60 69 70
|
syl2anc |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( .0. ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 72 |
59 71
|
sylan9eqr |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) /\ ( ( coe1 ` F ) ` k ) = .0. ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 73 |
72
|
ex |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
| 74 |
73
|
ex |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 75 |
74
|
com23 |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 76 |
75
|
a1dd |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 77 |
76
|
com14 |
|- ( k e. ( 0 ... n ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 78 |
77
|
adantl |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 79 |
58 78
|
syld |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( n e. NN -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 80 |
79
|
com24 |
|- ( ( -. k = 0 /\ k e. ( 0 ... n ) ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( n e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 81 |
80
|
ex |
|- ( -. k = 0 -> ( k e. ( 0 ... n ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( n e. NN -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) ) |
| 82 |
81
|
com14 |
|- ( n e. NN -> ( k e. ( 0 ... n ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) ) |
| 83 |
82
|
imp |
|- ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 84 |
83
|
com14 |
|- ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 85 |
84
|
adantr |
|- ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( -. k = 0 -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 86 |
85
|
com13 |
|- ( -. k = 0 -> ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) ) |
| 87 |
51 86
|
pm2.61i |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( ( A. c e. NN ( ( coe1 ` F ) ` c ) = .0. /\ A. c e. NN ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 88 |
20 87
|
biimtrid |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) ) |
| 89 |
88
|
imp |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( ( n e. NN /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) ) |
| 90 |
89
|
impl |
|- ( ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) /\ k e. ( 0 ... n ) ) -> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) = .0. ) |
| 91 |
90
|
mpteq2dva |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) = ( k e. ( 0 ... n ) |-> .0. ) ) |
| 92 |
91
|
oveq2d |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> ( ( ( coe1 ` F ) ` k ) ( .r ` R ) ( ( coe1 ` G ) ` ( n - k ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) ) |
| 93 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
| 94 |
|
ovexd |
|- ( R e. Ring -> ( 0 ... n ) e. _V ) |
| 95 |
3
|
gsumz |
|- ( ( R e. Mnd /\ ( 0 ... n ) e. _V ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 96 |
93 94 95
|
syl2anc |
|- ( R e. Ring -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 97 |
96
|
adantr |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 98 |
97
|
adantr |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 99 |
98
|
adantr |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( R gsum ( k e. ( 0 ... n ) |-> .0. ) ) = .0. ) |
| 100 |
19 92 99
|
3eqtrd |
|- ( ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) /\ n e. NN ) -> ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
| 101 |
100
|
ralrimiva |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> A. n e. NN ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
| 102 |
|
fveqeq2 |
|- ( c = n -> ( ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. <-> ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) ) |
| 103 |
102
|
cbvralvw |
|- ( A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. <-> A. n e. NN ( ( coe1 ` ( F .X. G ) ) ` n ) = .0. ) |
| 104 |
101 103
|
sylibr |
|- ( ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) /\ A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) ) -> A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. ) |
| 105 |
104
|
ex |
|- ( ( R e. Ring /\ ( F e. B /\ G e. B ) ) -> ( A. c e. NN ( ( ( coe1 ` F ) ` c ) = .0. /\ ( ( coe1 ` G ) ` c ) = .0. ) -> A. c e. NN ( ( coe1 ` ( F .X. G ) ) ` c ) = .0. ) ) |