| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cply1mul.p |
|
| 2 |
|
cply1mul.b |
|
| 3 |
|
cply1mul.0 |
|
| 4 |
|
cply1mul.m |
|
| 5 |
|
eqid |
|
| 6 |
1 4 5 2
|
coe1mul |
|
| 7 |
6
|
3expb |
|
| 8 |
7
|
adantr |
|
| 9 |
8
|
adantr |
|
| 10 |
|
oveq2 |
|
| 11 |
|
fvoveq1 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
10 12
|
mpteq12dv |
|
| 14 |
13
|
oveq2d |
|
| 15 |
14
|
adantl |
|
| 16 |
|
nnnn0 |
|
| 17 |
16
|
adantl |
|
| 18 |
|
ovexd |
|
| 19 |
9 15 17 18
|
fvmptd |
|
| 20 |
|
r19.26 |
|
| 21 |
|
oveq2 |
|
| 22 |
|
nncn |
|
| 23 |
22
|
subid1d |
|
| 24 |
23
|
adantr |
|
| 25 |
21 24
|
sylan9eqr |
|
| 26 |
|
simpll |
|
| 27 |
25 26
|
eqeltrd |
|
| 28 |
|
fveqeq2 |
|
| 29 |
28
|
rspcv |
|
| 30 |
27 29
|
syl |
|
| 31 |
|
oveq2 |
|
| 32 |
|
simpll |
|
| 33 |
|
simprl |
|
| 34 |
|
elfznn0 |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
adantr |
|
| 37 |
|
eqid |
|
| 38 |
|
eqid |
|
| 39 |
37 2 1 38
|
coe1fvalcl |
|
| 40 |
33 36 39
|
syl2an |
|
| 41 |
38 5 3
|
ringrz |
|
| 42 |
32 40 41
|
syl2anc |
|
| 43 |
31 42
|
sylan9eqr |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
expcom |
|
| 46 |
45
|
com23 |
|
| 47 |
30 46
|
syldc |
|
| 48 |
47
|
expd |
|
| 49 |
48
|
com24 |
|
| 50 |
49
|
adantl |
|
| 51 |
50
|
com13 |
|
| 52 |
|
neqne |
|
| 53 |
52 34
|
anim12ci |
|
| 54 |
|
elnnne0 |
|
| 55 |
53 54
|
sylibr |
|
| 56 |
|
fveqeq2 |
|
| 57 |
56
|
rspcv |
|
| 58 |
55 57
|
syl |
|
| 59 |
|
oveq1 |
|
| 60 |
|
simpll |
|
| 61 |
2
|
eleq2i |
|
| 62 |
61
|
biimpi |
|
| 63 |
62
|
adantl |
|
| 64 |
63
|
adantl |
|
| 65 |
|
fznn0sub |
|
| 66 |
|
eqid |
|
| 67 |
|
eqid |
|
| 68 |
66 67 1 38
|
coe1fvalcl |
|
| 69 |
64 65 68
|
syl2an |
|
| 70 |
38 5 3
|
ringlz |
|
| 71 |
60 69 70
|
syl2anc |
|
| 72 |
59 71
|
sylan9eqr |
|
| 73 |
72
|
ex |
|
| 74 |
73
|
ex |
|
| 75 |
74
|
com23 |
|
| 76 |
75
|
a1dd |
|
| 77 |
76
|
com14 |
|
| 78 |
77
|
adantl |
|
| 79 |
58 78
|
syld |
|
| 80 |
79
|
com24 |
|
| 81 |
80
|
ex |
|
| 82 |
81
|
com14 |
|
| 83 |
82
|
imp |
|
| 84 |
83
|
com14 |
|
| 85 |
84
|
adantr |
|
| 86 |
85
|
com13 |
|
| 87 |
51 86
|
pm2.61i |
|
| 88 |
20 87
|
biimtrid |
|
| 89 |
88
|
imp |
|
| 90 |
89
|
impl |
|
| 91 |
90
|
mpteq2dva |
|
| 92 |
91
|
oveq2d |
|
| 93 |
|
ringmnd |
|
| 94 |
|
ovexd |
|
| 95 |
3
|
gsumz |
|
| 96 |
93 94 95
|
syl2anc |
|
| 97 |
96
|
adantr |
|
| 98 |
97
|
adantr |
|
| 99 |
98
|
adantr |
|
| 100 |
19 92 99
|
3eqtrd |
|
| 101 |
100
|
ralrimiva |
|
| 102 |
|
fveqeq2 |
|
| 103 |
102
|
cbvralvw |
|
| 104 |
101 103
|
sylibr |
|
| 105 |
104
|
ex |
|