Metamath Proof Explorer


Theorem cply1mul

Description: The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cply1mul.p P = Poly 1 R
cply1mul.b B = Base P
cply1mul.0 0 ˙ = 0 R
cply1mul.m × ˙ = P
Assertion cply1mul R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ c coe 1 F × ˙ G c = 0 ˙

Proof

Step Hyp Ref Expression
1 cply1mul.p P = Poly 1 R
2 cply1mul.b B = Base P
3 cply1mul.0 0 ˙ = 0 R
4 cply1mul.m × ˙ = P
5 eqid R = R
6 1 4 5 2 coe1mul R Ring F B G B coe 1 F × ˙ G = s 0 R k = 0 s coe 1 F k R coe 1 G s k
7 6 3expb R Ring F B G B coe 1 F × ˙ G = s 0 R k = 0 s coe 1 F k R coe 1 G s k
8 7 adantr R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ coe 1 F × ˙ G = s 0 R k = 0 s coe 1 F k R coe 1 G s k
9 8 adantr R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n coe 1 F × ˙ G = s 0 R k = 0 s coe 1 F k R coe 1 G s k
10 oveq2 s = n 0 s = 0 n
11 fvoveq1 s = n coe 1 G s k = coe 1 G n k
12 11 oveq2d s = n coe 1 F k R coe 1 G s k = coe 1 F k R coe 1 G n k
13 10 12 mpteq12dv s = n k 0 s coe 1 F k R coe 1 G s k = k 0 n coe 1 F k R coe 1 G n k
14 13 oveq2d s = n R k = 0 s coe 1 F k R coe 1 G s k = R k = 0 n coe 1 F k R coe 1 G n k
15 14 adantl R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n s = n R k = 0 s coe 1 F k R coe 1 G s k = R k = 0 n coe 1 F k R coe 1 G n k
16 nnnn0 n n 0
17 16 adantl R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n n 0
18 ovexd R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n R k = 0 n coe 1 F k R coe 1 G n k V
19 9 15 17 18 fvmptd R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n coe 1 F × ˙ G n = R k = 0 n coe 1 F k R coe 1 G n k
20 r19.26 c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ c coe 1 F c = 0 ˙ c coe 1 G c = 0 ˙
21 oveq2 k = 0 n k = n 0
22 nncn n n
23 22 subid1d n n 0 = n
24 23 adantr n k 0 n n 0 = n
25 21 24 sylan9eqr n k 0 n k = 0 n k = n
26 simpll n k 0 n k = 0 n
27 25 26 eqeltrd n k 0 n k = 0 n k
28 fveqeq2 c = n k coe 1 G c = 0 ˙ coe 1 G n k = 0 ˙
29 28 rspcv n k c coe 1 G c = 0 ˙ coe 1 G n k = 0 ˙
30 27 29 syl n k 0 n k = 0 c coe 1 G c = 0 ˙ coe 1 G n k = 0 ˙
31 oveq2 coe 1 G n k = 0 ˙ coe 1 F k R coe 1 G n k = coe 1 F k R 0 ˙
32 simpll R Ring F B G B n k 0 n k = 0 R Ring
33 simprl R Ring F B G B F B
34 elfznn0 k 0 n k 0
35 34 adantl n k 0 n k 0
36 35 adantr n k 0 n k = 0 k 0
37 eqid coe 1 F = coe 1 F
38 eqid Base R = Base R
39 37 2 1 38 coe1fvalcl F B k 0 coe 1 F k Base R
40 33 36 39 syl2an R Ring F B G B n k 0 n k = 0 coe 1 F k Base R
41 38 5 3 ringrz R Ring coe 1 F k Base R coe 1 F k R 0 ˙ = 0 ˙
42 32 40 41 syl2anc R Ring F B G B n k 0 n k = 0 coe 1 F k R 0 ˙ = 0 ˙
43 31 42 sylan9eqr R Ring F B G B n k 0 n k = 0 coe 1 G n k = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
44 43 ex R Ring F B G B n k 0 n k = 0 coe 1 G n k = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
45 44 expcom n k 0 n k = 0 R Ring F B G B coe 1 G n k = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
46 45 com23 n k 0 n k = 0 coe 1 G n k = 0 ˙ R Ring F B G B coe 1 F k R coe 1 G n k = 0 ˙
47 30 46 syldc c coe 1 G c = 0 ˙ n k 0 n k = 0 R Ring F B G B coe 1 F k R coe 1 G n k = 0 ˙
48 47 expd c coe 1 G c = 0 ˙ n k 0 n k = 0 R Ring F B G B coe 1 F k R coe 1 G n k = 0 ˙
49 48 com24 c coe 1 G c = 0 ˙ R Ring F B G B k = 0 n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
50 49 adantl c coe 1 F c = 0 ˙ c coe 1 G c = 0 ˙ R Ring F B G B k = 0 n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
51 50 com13 k = 0 R Ring F B G B c coe 1 F c = 0 ˙ c coe 1 G c = 0 ˙ n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
52 neqne ¬ k = 0 k 0
53 52 34 anim12ci ¬ k = 0 k 0 n k 0 k 0
54 elnnne0 k k 0 k 0
55 53 54 sylibr ¬ k = 0 k 0 n k
56 fveqeq2 c = k coe 1 F c = 0 ˙ coe 1 F k = 0 ˙
57 56 rspcv k c coe 1 F c = 0 ˙ coe 1 F k = 0 ˙
58 55 57 syl ¬ k = 0 k 0 n c coe 1 F c = 0 ˙ coe 1 F k = 0 ˙
59 oveq1 coe 1 F k = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙ R coe 1 G n k
60 simpll R Ring F B G B k 0 n R Ring
61 2 eleq2i G B G Base P
62 61 biimpi G B G Base P
63 62 adantl F B G B G Base P
64 63 adantl R Ring F B G B G Base P
65 fznn0sub k 0 n n k 0
66 eqid coe 1 G = coe 1 G
67 eqid Base P = Base P
68 66 67 1 38 coe1fvalcl G Base P n k 0 coe 1 G n k Base R
69 64 65 68 syl2an R Ring F B G B k 0 n coe 1 G n k Base R
70 38 5 3 ringlz R Ring coe 1 G n k Base R 0 ˙ R coe 1 G n k = 0 ˙
71 60 69 70 syl2anc R Ring F B G B k 0 n 0 ˙ R coe 1 G n k = 0 ˙
72 59 71 sylan9eqr R Ring F B G B k 0 n coe 1 F k = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
73 72 ex R Ring F B G B k 0 n coe 1 F k = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
74 73 ex R Ring F B G B k 0 n coe 1 F k = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
75 74 com23 R Ring F B G B coe 1 F k = 0 ˙ k 0 n coe 1 F k R coe 1 G n k = 0 ˙
76 75 a1dd R Ring F B G B coe 1 F k = 0 ˙ n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
77 76 com14 k 0 n coe 1 F k = 0 ˙ n R Ring F B G B coe 1 F k R coe 1 G n k = 0 ˙
78 77 adantl ¬ k = 0 k 0 n coe 1 F k = 0 ˙ n R Ring F B G B coe 1 F k R coe 1 G n k = 0 ˙
79 58 78 syld ¬ k = 0 k 0 n c coe 1 F c = 0 ˙ n R Ring F B G B coe 1 F k R coe 1 G n k = 0 ˙
80 79 com24 ¬ k = 0 k 0 n R Ring F B G B n c coe 1 F c = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
81 80 ex ¬ k = 0 k 0 n R Ring F B G B n c coe 1 F c = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
82 81 com14 n k 0 n R Ring F B G B ¬ k = 0 c coe 1 F c = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
83 82 imp n k 0 n R Ring F B G B ¬ k = 0 c coe 1 F c = 0 ˙ coe 1 F k R coe 1 G n k = 0 ˙
84 83 com14 c coe 1 F c = 0 ˙ R Ring F B G B ¬ k = 0 n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
85 84 adantr c coe 1 F c = 0 ˙ c coe 1 G c = 0 ˙ R Ring F B G B ¬ k = 0 n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
86 85 com13 ¬ k = 0 R Ring F B G B c coe 1 F c = 0 ˙ c coe 1 G c = 0 ˙ n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
87 51 86 pm2.61i R Ring F B G B c coe 1 F c = 0 ˙ c coe 1 G c = 0 ˙ n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
88 20 87 syl5bi R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
89 88 imp R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
90 89 impl R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n k 0 n coe 1 F k R coe 1 G n k = 0 ˙
91 90 mpteq2dva R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n k 0 n coe 1 F k R coe 1 G n k = k 0 n 0 ˙
92 91 oveq2d R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n R k = 0 n coe 1 F k R coe 1 G n k = R k = 0 n 0 ˙
93 ringmnd R Ring R Mnd
94 ovexd R Ring 0 n V
95 3 gsumz R Mnd 0 n V R k = 0 n 0 ˙ = 0 ˙
96 93 94 95 syl2anc R Ring R k = 0 n 0 ˙ = 0 ˙
97 96 adantr R Ring F B G B R k = 0 n 0 ˙ = 0 ˙
98 97 adantr R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ R k = 0 n 0 ˙ = 0 ˙
99 98 adantr R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n R k = 0 n 0 ˙ = 0 ˙
100 19 92 99 3eqtrd R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n coe 1 F × ˙ G n = 0 ˙
101 100 ralrimiva R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ n coe 1 F × ˙ G n = 0 ˙
102 fveqeq2 c = n coe 1 F × ˙ G c = 0 ˙ coe 1 F × ˙ G n = 0 ˙
103 102 cbvralvw c coe 1 F × ˙ G c = 0 ˙ n coe 1 F × ˙ G n = 0 ˙
104 101 103 sylibr R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ c coe 1 F × ˙ G c = 0 ˙
105 104 ex R Ring F B G B c coe 1 F c = 0 ˙ coe 1 G c = 0 ˙ c coe 1 F × ˙ G c = 0 ˙