| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1l |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> A e. RR ) |
| 2 |
|
simpr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> 0 < A ) |
| 3 |
1 2
|
elrpd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> A e. RR+ ) |
| 4 |
3
|
adantr |
|- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> A e. RR+ ) |
| 5 |
|
simp2l |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> B e. RR ) |
| 6 |
5
|
ad2antrr |
|- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> B e. RR ) |
| 7 |
|
simpr |
|- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> 0 < B ) |
| 8 |
6 7
|
elrpd |
|- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> B e. RR+ ) |
| 9 |
|
simp3 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C e. RR+ ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> C e. RR+ ) |
| 11 |
|
simp3 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> C e. RR+ ) |
| 12 |
11
|
rpred |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> C e. RR ) |
| 13 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( log ` A ) e. RR ) |
| 15 |
12 14
|
remulcld |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( C x. ( log ` A ) ) e. RR ) |
| 16 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
| 17 |
16
|
3ad2ant2 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( log ` B ) e. RR ) |
| 18 |
12 17
|
remulcld |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( C x. ( log ` B ) ) e. RR ) |
| 19 |
|
efle |
|- ( ( ( C x. ( log ` A ) ) e. RR /\ ( C x. ( log ` B ) ) e. RR ) -> ( ( C x. ( log ` A ) ) <_ ( C x. ( log ` B ) ) <-> ( exp ` ( C x. ( log ` A ) ) ) <_ ( exp ` ( C x. ( log ` B ) ) ) ) ) |
| 20 |
15 18 19
|
syl2anc |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( C x. ( log ` A ) ) <_ ( C x. ( log ` B ) ) <-> ( exp ` ( C x. ( log ` A ) ) ) <_ ( exp ` ( C x. ( log ` B ) ) ) ) ) |
| 21 |
|
efle |
|- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( exp ` ( log ` A ) ) <_ ( exp ` ( log ` B ) ) ) ) |
| 22 |
14 17 21
|
syl2anc |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( exp ` ( log ` A ) ) <_ ( exp ` ( log ` B ) ) ) ) |
| 23 |
14 17 11
|
lemul2d |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( C x. ( log ` A ) ) <_ ( C x. ( log ` B ) ) ) ) |
| 24 |
|
reeflog |
|- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
| 25 |
24
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( exp ` ( log ` A ) ) = A ) |
| 26 |
|
reeflog |
|- ( B e. RR+ -> ( exp ` ( log ` B ) ) = B ) |
| 27 |
26
|
3ad2ant2 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( exp ` ( log ` B ) ) = B ) |
| 28 |
25 27
|
breq12d |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( exp ` ( log ` A ) ) <_ ( exp ` ( log ` B ) ) <-> A <_ B ) ) |
| 29 |
22 23 28
|
3bitr3rd |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( A <_ B <-> ( C x. ( log ` A ) ) <_ ( C x. ( log ` B ) ) ) ) |
| 30 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
| 31 |
30
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> A e. RR ) |
| 32 |
31
|
recnd |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> A e. CC ) |
| 33 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
| 34 |
33
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> A =/= 0 ) |
| 35 |
12
|
recnd |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> C e. CC ) |
| 36 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ C e. CC ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
| 37 |
32 34 35 36
|
syl3anc |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( A ^c C ) = ( exp ` ( C x. ( log ` A ) ) ) ) |
| 38 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> B e. RR ) |
| 40 |
39
|
recnd |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> B e. CC ) |
| 41 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
| 42 |
41
|
3ad2ant2 |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> B =/= 0 ) |
| 43 |
|
cxpef |
|- ( ( B e. CC /\ B =/= 0 /\ C e. CC ) -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) |
| 44 |
40 42 35 43
|
syl3anc |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( B ^c C ) = ( exp ` ( C x. ( log ` B ) ) ) ) |
| 45 |
37 44
|
breq12d |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( ( A ^c C ) <_ ( B ^c C ) <-> ( exp ` ( C x. ( log ` A ) ) ) <_ ( exp ` ( C x. ( log ` B ) ) ) ) ) |
| 46 |
20 29 45
|
3bitr4d |
|- ( ( A e. RR+ /\ B e. RR+ /\ C e. RR+ ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 47 |
4 8 10 46
|
syl3anc |
|- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 < B ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 48 |
|
0re |
|- 0 e. RR |
| 49 |
|
simp1l |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> A e. RR ) |
| 50 |
|
ltnle |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> -. A <_ 0 ) ) |
| 51 |
48 49 50
|
sylancr |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 < A <-> -. A <_ 0 ) ) |
| 52 |
51
|
biimpa |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> -. A <_ 0 ) |
| 53 |
9
|
rpred |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C e. RR ) |
| 54 |
53
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> C e. RR ) |
| 55 |
|
rpcxpcl |
|- ( ( A e. RR+ /\ C e. RR ) -> ( A ^c C ) e. RR+ ) |
| 56 |
3 54 55
|
syl2anc |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( A ^c C ) e. RR+ ) |
| 57 |
|
rpgt0 |
|- ( ( A ^c C ) e. RR+ -> 0 < ( A ^c C ) ) |
| 58 |
|
rpre |
|- ( ( A ^c C ) e. RR+ -> ( A ^c C ) e. RR ) |
| 59 |
|
ltnle |
|- ( ( 0 e. RR /\ ( A ^c C ) e. RR ) -> ( 0 < ( A ^c C ) <-> -. ( A ^c C ) <_ 0 ) ) |
| 60 |
48 58 59
|
sylancr |
|- ( ( A ^c C ) e. RR+ -> ( 0 < ( A ^c C ) <-> -. ( A ^c C ) <_ 0 ) ) |
| 61 |
57 60
|
mpbid |
|- ( ( A ^c C ) e. RR+ -> -. ( A ^c C ) <_ 0 ) |
| 62 |
56 61
|
syl |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> -. ( A ^c C ) <_ 0 ) |
| 63 |
53
|
recnd |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C e. CC ) |
| 64 |
9
|
rpne0d |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> C =/= 0 ) |
| 65 |
|
0cxp |
|- ( ( C e. CC /\ C =/= 0 ) -> ( 0 ^c C ) = 0 ) |
| 66 |
63 64 65
|
syl2anc |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 ^c C ) = 0 ) |
| 67 |
66
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( 0 ^c C ) = 0 ) |
| 68 |
67
|
breq2d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( ( A ^c C ) <_ ( 0 ^c C ) <-> ( A ^c C ) <_ 0 ) ) |
| 69 |
62 68
|
mtbird |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> -. ( A ^c C ) <_ ( 0 ^c C ) ) |
| 70 |
52 69
|
2falsed |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( A <_ 0 <-> ( A ^c C ) <_ ( 0 ^c C ) ) ) |
| 71 |
|
breq2 |
|- ( 0 = B -> ( A <_ 0 <-> A <_ B ) ) |
| 72 |
|
oveq1 |
|- ( 0 = B -> ( 0 ^c C ) = ( B ^c C ) ) |
| 73 |
72
|
breq2d |
|- ( 0 = B -> ( ( A ^c C ) <_ ( 0 ^c C ) <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 74 |
71 73
|
bibi12d |
|- ( 0 = B -> ( ( A <_ 0 <-> ( A ^c C ) <_ ( 0 ^c C ) ) <-> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) ) |
| 75 |
70 74
|
syl5ibcom |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( 0 = B -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) ) |
| 76 |
75
|
imp |
|- ( ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) /\ 0 = B ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 77 |
|
simp2r |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> 0 <_ B ) |
| 78 |
|
leloe |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
| 79 |
48 5 78
|
sylancr |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 <_ B <-> ( 0 < B \/ 0 = B ) ) ) |
| 80 |
77 79
|
mpbid |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 < B \/ 0 = B ) ) |
| 81 |
80
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( 0 < B \/ 0 = B ) ) |
| 82 |
47 76 81
|
mpjaodan |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 < A ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 83 |
|
simpr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> 0 = A ) |
| 84 |
|
simpl2r |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> 0 <_ B ) |
| 85 |
83 84
|
eqbrtrrd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> A <_ B ) |
| 86 |
66
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> ( 0 ^c C ) = 0 ) |
| 87 |
83
|
oveq1d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> ( 0 ^c C ) = ( A ^c C ) ) |
| 88 |
86 87
|
eqtr3d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> 0 = ( A ^c C ) ) |
| 89 |
|
simpl2l |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> B e. RR ) |
| 90 |
53
|
adantr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> C e. RR ) |
| 91 |
|
cxpge0 |
|- ( ( B e. RR /\ 0 <_ B /\ C e. RR ) -> 0 <_ ( B ^c C ) ) |
| 92 |
89 84 90 91
|
syl3anc |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> 0 <_ ( B ^c C ) ) |
| 93 |
88 92
|
eqbrtrrd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> ( A ^c C ) <_ ( B ^c C ) ) |
| 94 |
85 93
|
2thd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) /\ 0 = A ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |
| 95 |
|
simp1r |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> 0 <_ A ) |
| 96 |
|
leloe |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 97 |
48 49 96
|
sylancr |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
| 98 |
95 97
|
mpbid |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( 0 < A \/ 0 = A ) ) |
| 99 |
82 94 98
|
mpjaodan |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) /\ C e. RR+ ) -> ( A <_ B <-> ( A ^c C ) <_ ( B ^c C ) ) ) |