| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3re |
|- 3 e. RR |
| 2 |
1
|
a1i |
|- ( ( A e. CC /\ B e. RR+ ) -> 3 e. RR ) |
| 3 |
|
0red |
|- ( ( A e. CC /\ B e. RR+ ) -> 0 e. RR ) |
| 4 |
3
|
recnd |
|- ( ( A e. CC /\ B e. RR+ ) -> 0 e. CC ) |
| 5 |
|
ovexd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) e. _V ) |
| 6 |
|
simpr |
|- ( ( A e. CC /\ B e. RR+ ) -> B e. RR+ ) |
| 7 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 8 |
7
|
adantr |
|- ( ( A e. CC /\ B e. RR+ ) -> ( Re ` A ) e. RR ) |
| 9 |
|
1re |
|- 1 e. RR |
| 10 |
|
ifcl |
|- ( ( ( Re ` A ) e. RR /\ 1 e. RR ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. RR ) |
| 11 |
8 9 10
|
sylancl |
|- ( ( A e. CC /\ B e. RR+ ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. RR ) |
| 12 |
9
|
a1i |
|- ( ( A e. CC /\ B e. RR+ ) -> 1 e. RR ) |
| 13 |
|
0lt1 |
|- 0 < 1 |
| 14 |
13
|
a1i |
|- ( ( A e. CC /\ B e. RR+ ) -> 0 < 1 ) |
| 15 |
|
max1 |
|- ( ( 1 e. RR /\ ( Re ` A ) e. RR ) -> 1 <_ if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) |
| 16 |
9 8 15
|
sylancr |
|- ( ( A e. CC /\ B e. RR+ ) -> 1 <_ if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) |
| 17 |
3 12 11 14 16
|
ltletrd |
|- ( ( A e. CC /\ B e. RR+ ) -> 0 < if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) |
| 18 |
11 17
|
elrpd |
|- ( ( A e. CC /\ B e. RR+ ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. RR+ ) |
| 19 |
6 18
|
rpdivcld |
|- ( ( A e. CC /\ B e. RR+ ) -> ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. RR+ ) |
| 20 |
|
cxploglim |
|- ( ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. RR+ -> ( n e. RR+ |-> ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ) ~~>r 0 ) |
| 21 |
19 20
|
syl |
|- ( ( A e. CC /\ B e. RR+ ) -> ( n e. RR+ |-> ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ) ~~>r 0 ) |
| 22 |
5 21 18
|
rlimcxp |
|- ( ( A e. CC /\ B e. RR+ ) -> ( n e. RR+ |-> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ~~>r 0 ) |
| 23 |
5 21
|
rlimmptrcl |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) e. CC ) |
| 24 |
11
|
adantr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. RR ) |
| 25 |
24
|
recnd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. CC ) |
| 26 |
23 25
|
cxpcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. CC ) |
| 27 |
|
relogcl |
|- ( n e. RR+ -> ( log ` n ) e. RR ) |
| 28 |
27
|
adantl |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( log ` n ) e. RR ) |
| 29 |
28
|
recnd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( log ` n ) e. CC ) |
| 30 |
|
simpll |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> A e. CC ) |
| 31 |
29 30
|
cxpcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( ( log ` n ) ^c A ) e. CC ) |
| 32 |
|
simpr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> n e. RR+ ) |
| 33 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
| 34 |
33
|
ad2antlr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> B e. RR ) |
| 35 |
32 34
|
rpcxpcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( n ^c B ) e. RR+ ) |
| 36 |
35
|
rpcnd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( n ^c B ) e. CC ) |
| 37 |
35
|
rpne0d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( n ^c B ) =/= 0 ) |
| 38 |
31 36 37
|
divcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) e. CC ) |
| 39 |
38
|
adantrr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) e. CC ) |
| 40 |
39
|
abscld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) e. RR ) |
| 41 |
|
rpre |
|- ( n e. RR+ -> n e. RR ) |
| 42 |
41
|
ad2antrl |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> n e. RR ) |
| 43 |
9
|
a1i |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> 1 e. RR ) |
| 44 |
1
|
a1i |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> 3 e. RR ) |
| 45 |
|
1lt3 |
|- 1 < 3 |
| 46 |
45
|
a1i |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> 1 < 3 ) |
| 47 |
|
simprr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> 3 <_ n ) |
| 48 |
43 44 42 46 47
|
ltletrd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> 1 < n ) |
| 49 |
42 48
|
rplogcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( log ` n ) e. RR+ ) |
| 50 |
32
|
adantrr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> n e. RR+ ) |
| 51 |
33
|
ad2antlr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> B e. RR ) |
| 52 |
18
|
adantr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. RR+ ) |
| 53 |
51 52
|
rerpdivcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. RR ) |
| 54 |
50 53
|
rpcxpcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) e. RR+ ) |
| 55 |
49 54
|
rpdivcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) e. RR+ ) |
| 56 |
11
|
adantr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. RR ) |
| 57 |
55 56
|
rpcxpcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. RR+ ) |
| 58 |
57
|
rpred |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. RR ) |
| 59 |
26
|
adantrr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. CC ) |
| 60 |
59
|
abscld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) e. RR ) |
| 61 |
31
|
adantrr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( log ` n ) ^c A ) e. CC ) |
| 62 |
61
|
abscld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( log ` n ) ^c A ) ) e. RR ) |
| 63 |
49 56
|
rpcxpcld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. RR+ ) |
| 64 |
63
|
rpred |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) e. RR ) |
| 65 |
35
|
adantrr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( n ^c B ) e. RR+ ) |
| 66 |
|
simpll |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> A e. CC ) |
| 67 |
|
abscxp |
|- ( ( ( log ` n ) e. RR+ /\ A e. CC ) -> ( abs ` ( ( log ` n ) ^c A ) ) = ( ( log ` n ) ^c ( Re ` A ) ) ) |
| 68 |
49 66 67
|
syl2anc |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( log ` n ) ^c A ) ) = ( ( log ` n ) ^c ( Re ` A ) ) ) |
| 69 |
66
|
recld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( Re ` A ) e. RR ) |
| 70 |
|
max2 |
|- ( ( 1 e. RR /\ ( Re ` A ) e. RR ) -> ( Re ` A ) <_ if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) |
| 71 |
9 69 70
|
sylancr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( Re ` A ) <_ if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) |
| 72 |
27
|
ad2antrl |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( log ` n ) e. RR ) |
| 73 |
|
loge |
|- ( log ` _e ) = 1 |
| 74 |
|
ere |
|- _e e. RR |
| 75 |
74
|
a1i |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> _e e. RR ) |
| 76 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
| 77 |
76
|
simpri |
|- _e < 3 |
| 78 |
77
|
a1i |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> _e < 3 ) |
| 79 |
75 44 42 78 47
|
ltletrd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> _e < n ) |
| 80 |
|
epr |
|- _e e. RR+ |
| 81 |
|
logltb |
|- ( ( _e e. RR+ /\ n e. RR+ ) -> ( _e < n <-> ( log ` _e ) < ( log ` n ) ) ) |
| 82 |
80 50 81
|
sylancr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( _e < n <-> ( log ` _e ) < ( log ` n ) ) ) |
| 83 |
79 82
|
mpbid |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( log ` _e ) < ( log ` n ) ) |
| 84 |
73 83
|
eqbrtrrid |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> 1 < ( log ` n ) ) |
| 85 |
72 84 69 56
|
cxpled |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( Re ` A ) <_ if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) <-> ( ( log ` n ) ^c ( Re ` A ) ) <_ ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) |
| 86 |
71 85
|
mpbid |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( log ` n ) ^c ( Re ` A ) ) <_ ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) |
| 87 |
68 86
|
eqbrtrd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( log ` n ) ^c A ) ) <_ ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) |
| 88 |
62 64 65 87
|
lediv1dd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( abs ` ( ( log ` n ) ^c A ) ) / ( n ^c B ) ) <_ ( ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) / ( n ^c B ) ) ) |
| 89 |
31 36 37
|
absdivd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ n e. RR+ ) -> ( abs ` ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) = ( ( abs ` ( ( log ` n ) ^c A ) ) / ( abs ` ( n ^c B ) ) ) ) |
| 90 |
89
|
adantrr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) = ( ( abs ` ( ( log ` n ) ^c A ) ) / ( abs ` ( n ^c B ) ) ) ) |
| 91 |
65
|
rprege0d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( n ^c B ) e. RR /\ 0 <_ ( n ^c B ) ) ) |
| 92 |
|
absid |
|- ( ( ( n ^c B ) e. RR /\ 0 <_ ( n ^c B ) ) -> ( abs ` ( n ^c B ) ) = ( n ^c B ) ) |
| 93 |
91 92
|
syl |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( n ^c B ) ) = ( n ^c B ) ) |
| 94 |
93
|
oveq2d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( abs ` ( ( log ` n ) ^c A ) ) / ( abs ` ( n ^c B ) ) ) = ( ( abs ` ( ( log ` n ) ^c A ) ) / ( n ^c B ) ) ) |
| 95 |
90 94
|
eqtrd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) = ( ( abs ` ( ( log ` n ) ^c A ) ) / ( n ^c B ) ) ) |
| 96 |
49
|
rprege0d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( log ` n ) e. RR /\ 0 <_ ( log ` n ) ) ) |
| 97 |
11
|
recnd |
|- ( ( A e. CC /\ B e. RR+ ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. CC ) |
| 98 |
97
|
adantr |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. CC ) |
| 99 |
|
divcxp |
|- ( ( ( ( log ` n ) e. RR /\ 0 <_ ( log ` n ) ) /\ ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) e. RR+ /\ if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) e. CC ) -> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) = ( ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) / ( ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) |
| 100 |
96 54 98 99
|
syl3anc |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) = ( ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) / ( ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) |
| 101 |
50 53 98
|
cxpmuld |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( n ^c ( ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) x. if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) = ( ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) |
| 102 |
51
|
recnd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> B e. CC ) |
| 103 |
52
|
rpne0d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) =/= 0 ) |
| 104 |
102 98 103
|
divcan1d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) x. if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) = B ) |
| 105 |
104
|
oveq2d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( n ^c ( ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) x. if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) = ( n ^c B ) ) |
| 106 |
101 105
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) = ( n ^c B ) ) |
| 107 |
106
|
oveq2d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) / ( ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) = ( ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) / ( n ^c B ) ) ) |
| 108 |
100 107
|
eqtrd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) = ( ( ( log ` n ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) / ( n ^c B ) ) ) |
| 109 |
88 95 108
|
3brtr4d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) <_ ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) |
| 110 |
58
|
leabsd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) <_ ( abs ` ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) |
| 111 |
40 58 60 109 110
|
letrd |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) <_ ( abs ` ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) |
| 112 |
39
|
subid1d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) - 0 ) = ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) |
| 113 |
112
|
fveq2d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) - 0 ) ) = ( abs ` ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) ) |
| 114 |
59
|
subid1d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) - 0 ) = ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) |
| 115 |
114
|
fveq2d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) - 0 ) ) = ( abs ` ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) |
| 116 |
111 113 115
|
3brtr4d |
|- ( ( ( A e. CC /\ B e. RR+ ) /\ ( n e. RR+ /\ 3 <_ n ) ) -> ( abs ` ( ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) - 0 ) ) <_ ( abs ` ( ( ( ( log ` n ) / ( n ^c ( B / if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) ) ) ^c if ( 1 <_ ( Re ` A ) , ( Re ` A ) , 1 ) ) - 0 ) ) ) |
| 117 |
2 4 22 26 38 116
|
rlimsqzlem |
|- ( ( A e. CC /\ B e. RR+ ) -> ( n e. RR+ |-> ( ( ( log ` n ) ^c A ) / ( n ^c B ) ) ) ~~>r 0 ) |