| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem26.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem26.2 |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem26.3 |
|- ( ph -> A < B ) |
| 4 |
|
fourierdlem26.4 |
|- T = ( B - A ) |
| 5 |
|
fourierdlem26.5 |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 6 |
|
fourierdlem26.6 |
|- ( ph -> X e. RR ) |
| 7 |
|
fourierdlem26.7 |
|- ( ph -> ( E ` X ) = B ) |
| 8 |
|
fourierdlem26.8 |
|- ( ph -> Y e. ( X (,] ( X + T ) ) ) |
| 9 |
5
|
a1i |
|- ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ x = Y ) -> x = Y ) |
| 11 |
10
|
oveq2d |
|- ( ( ph /\ x = Y ) -> ( B - x ) = ( B - Y ) ) |
| 12 |
11
|
oveq1d |
|- ( ( ph /\ x = Y ) -> ( ( B - x ) / T ) = ( ( B - Y ) / T ) ) |
| 13 |
12
|
fveq2d |
|- ( ( ph /\ x = Y ) -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - Y ) / T ) ) ) |
| 14 |
13
|
oveq1d |
|- ( ( ph /\ x = Y ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) |
| 15 |
10 14
|
oveq12d |
|- ( ( ph /\ x = Y ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) ) |
| 16 |
6
|
rexrd |
|- ( ph -> X e. RR* ) |
| 17 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
| 18 |
4 17
|
eqeltrid |
|- ( ph -> T e. RR ) |
| 19 |
6 18
|
readdcld |
|- ( ph -> ( X + T ) e. RR ) |
| 20 |
|
elioc2 |
|- ( ( X e. RR* /\ ( X + T ) e. RR ) -> ( Y e. ( X (,] ( X + T ) ) <-> ( Y e. RR /\ X < Y /\ Y <_ ( X + T ) ) ) ) |
| 21 |
16 19 20
|
syl2anc |
|- ( ph -> ( Y e. ( X (,] ( X + T ) ) <-> ( Y e. RR /\ X < Y /\ Y <_ ( X + T ) ) ) ) |
| 22 |
8 21
|
mpbid |
|- ( ph -> ( Y e. RR /\ X < Y /\ Y <_ ( X + T ) ) ) |
| 23 |
22
|
simp1d |
|- ( ph -> Y e. RR ) |
| 24 |
2 23
|
resubcld |
|- ( ph -> ( B - Y ) e. RR ) |
| 25 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
| 26 |
3 25
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
| 27 |
26 4
|
breqtrrdi |
|- ( ph -> 0 < T ) |
| 28 |
27
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
| 29 |
24 18 28
|
redivcld |
|- ( ph -> ( ( B - Y ) / T ) e. RR ) |
| 30 |
29
|
flcld |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) e. ZZ ) |
| 31 |
30
|
zred |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) e. RR ) |
| 32 |
31 18
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) e. RR ) |
| 33 |
23 32
|
readdcld |
|- ( ph -> ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) e. RR ) |
| 34 |
9 15 23 33
|
fvmptd |
|- ( ph -> ( E ` Y ) = ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) ) |
| 35 |
6
|
recnd |
|- ( ph -> X e. CC ) |
| 36 |
23
|
recnd |
|- ( ph -> Y e. CC ) |
| 37 |
35 36
|
pncan3d |
|- ( ph -> ( X + ( Y - X ) ) = Y ) |
| 38 |
37
|
eqcomd |
|- ( ph -> Y = ( X + ( Y - X ) ) ) |
| 39 |
38
|
oveq2d |
|- ( ph -> ( B - Y ) = ( B - ( X + ( Y - X ) ) ) ) |
| 40 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 41 |
36 35
|
subcld |
|- ( ph -> ( Y - X ) e. CC ) |
| 42 |
40 35 41
|
subsub4d |
|- ( ph -> ( ( B - X ) - ( Y - X ) ) = ( B - ( X + ( Y - X ) ) ) ) |
| 43 |
39 42
|
eqtr4d |
|- ( ph -> ( B - Y ) = ( ( B - X ) - ( Y - X ) ) ) |
| 44 |
43
|
oveq1d |
|- ( ph -> ( ( B - Y ) / T ) = ( ( ( B - X ) - ( Y - X ) ) / T ) ) |
| 45 |
2 6
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
| 46 |
45
|
recnd |
|- ( ph -> ( B - X ) e. CC ) |
| 47 |
18
|
recnd |
|- ( ph -> T e. CC ) |
| 48 |
46 41 47 28
|
divsubdird |
|- ( ph -> ( ( ( B - X ) - ( Y - X ) ) / T ) = ( ( ( B - X ) / T ) - ( ( Y - X ) / T ) ) ) |
| 49 |
41 47 28
|
divnegd |
|- ( ph -> -u ( ( Y - X ) / T ) = ( -u ( Y - X ) / T ) ) |
| 50 |
36 35
|
negsubdi2d |
|- ( ph -> -u ( Y - X ) = ( X - Y ) ) |
| 51 |
50
|
oveq1d |
|- ( ph -> ( -u ( Y - X ) / T ) = ( ( X - Y ) / T ) ) |
| 52 |
49 51
|
eqtrd |
|- ( ph -> -u ( ( Y - X ) / T ) = ( ( X - Y ) / T ) ) |
| 53 |
52
|
oveq2d |
|- ( ph -> ( ( ( B - X ) / T ) + -u ( ( Y - X ) / T ) ) = ( ( ( B - X ) / T ) + ( ( X - Y ) / T ) ) ) |
| 54 |
45 18 28
|
redivcld |
|- ( ph -> ( ( B - X ) / T ) e. RR ) |
| 55 |
54
|
recnd |
|- ( ph -> ( ( B - X ) / T ) e. CC ) |
| 56 |
41 47 28
|
divcld |
|- ( ph -> ( ( Y - X ) / T ) e. CC ) |
| 57 |
55 56
|
negsubd |
|- ( ph -> ( ( ( B - X ) / T ) + -u ( ( Y - X ) / T ) ) = ( ( ( B - X ) / T ) - ( ( Y - X ) / T ) ) ) |
| 58 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 59 |
55 58
|
npcand |
|- ( ph -> ( ( ( ( B - X ) / T ) - 1 ) + 1 ) = ( ( B - X ) / T ) ) |
| 60 |
59
|
eqcomd |
|- ( ph -> ( ( B - X ) / T ) = ( ( ( ( B - X ) / T ) - 1 ) + 1 ) ) |
| 61 |
60
|
oveq1d |
|- ( ph -> ( ( ( B - X ) / T ) + ( ( X - Y ) / T ) ) = ( ( ( ( ( B - X ) / T ) - 1 ) + 1 ) + ( ( X - Y ) / T ) ) ) |
| 62 |
55 58
|
subcld |
|- ( ph -> ( ( ( B - X ) / T ) - 1 ) e. CC ) |
| 63 |
35 36
|
subcld |
|- ( ph -> ( X - Y ) e. CC ) |
| 64 |
63 47 28
|
divcld |
|- ( ph -> ( ( X - Y ) / T ) e. CC ) |
| 65 |
62 58 64
|
addassd |
|- ( ph -> ( ( ( ( ( B - X ) / T ) - 1 ) + 1 ) + ( ( X - Y ) / T ) ) = ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) |
| 66 |
61 65
|
eqtrd |
|- ( ph -> ( ( ( B - X ) / T ) + ( ( X - Y ) / T ) ) = ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) |
| 67 |
53 57 66
|
3eqtr3d |
|- ( ph -> ( ( ( B - X ) / T ) - ( ( Y - X ) / T ) ) = ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) |
| 68 |
44 48 67
|
3eqtrd |
|- ( ph -> ( ( B - Y ) / T ) = ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) |
| 69 |
68
|
fveq2d |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) = ( |_ ` ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) ) |
| 70 |
6 23
|
resubcld |
|- ( ph -> ( X - Y ) e. RR ) |
| 71 |
18 70
|
readdcld |
|- ( ph -> ( T + ( X - Y ) ) e. RR ) |
| 72 |
18 27
|
elrpd |
|- ( ph -> T e. RR+ ) |
| 73 |
35 47
|
addcomd |
|- ( ph -> ( X + T ) = ( T + X ) ) |
| 74 |
73
|
oveq2d |
|- ( ph -> ( X (,] ( X + T ) ) = ( X (,] ( T + X ) ) ) |
| 75 |
8 74
|
eleqtrd |
|- ( ph -> Y e. ( X (,] ( T + X ) ) ) |
| 76 |
18 6
|
readdcld |
|- ( ph -> ( T + X ) e. RR ) |
| 77 |
|
elioc2 |
|- ( ( X e. RR* /\ ( T + X ) e. RR ) -> ( Y e. ( X (,] ( T + X ) ) <-> ( Y e. RR /\ X < Y /\ Y <_ ( T + X ) ) ) ) |
| 78 |
16 76 77
|
syl2anc |
|- ( ph -> ( Y e. ( X (,] ( T + X ) ) <-> ( Y e. RR /\ X < Y /\ Y <_ ( T + X ) ) ) ) |
| 79 |
75 78
|
mpbid |
|- ( ph -> ( Y e. RR /\ X < Y /\ Y <_ ( T + X ) ) ) |
| 80 |
79
|
simp3d |
|- ( ph -> Y <_ ( T + X ) ) |
| 81 |
23 6 18
|
lesubaddd |
|- ( ph -> ( ( Y - X ) <_ T <-> Y <_ ( T + X ) ) ) |
| 82 |
80 81
|
mpbird |
|- ( ph -> ( Y - X ) <_ T ) |
| 83 |
23 6
|
resubcld |
|- ( ph -> ( Y - X ) e. RR ) |
| 84 |
18 83
|
subge0d |
|- ( ph -> ( 0 <_ ( T - ( Y - X ) ) <-> ( Y - X ) <_ T ) ) |
| 85 |
82 84
|
mpbird |
|- ( ph -> 0 <_ ( T - ( Y - X ) ) ) |
| 86 |
47 36 35
|
subsub2d |
|- ( ph -> ( T - ( Y - X ) ) = ( T + ( X - Y ) ) ) |
| 87 |
85 86
|
breqtrd |
|- ( ph -> 0 <_ ( T + ( X - Y ) ) ) |
| 88 |
71 72 87
|
divge0d |
|- ( ph -> 0 <_ ( ( T + ( X - Y ) ) / T ) ) |
| 89 |
47 63 47 28
|
divdird |
|- ( ph -> ( ( T + ( X - Y ) ) / T ) = ( ( T / T ) + ( ( X - Y ) / T ) ) ) |
| 90 |
47 28
|
dividd |
|- ( ph -> ( T / T ) = 1 ) |
| 91 |
90
|
eqcomd |
|- ( ph -> 1 = ( T / T ) ) |
| 92 |
91
|
oveq1d |
|- ( ph -> ( 1 + ( ( X - Y ) / T ) ) = ( ( T / T ) + ( ( X - Y ) / T ) ) ) |
| 93 |
89 92
|
eqtr4d |
|- ( ph -> ( ( T + ( X - Y ) ) / T ) = ( 1 + ( ( X - Y ) / T ) ) ) |
| 94 |
88 93
|
breqtrd |
|- ( ph -> 0 <_ ( 1 + ( ( X - Y ) / T ) ) ) |
| 95 |
22
|
simp2d |
|- ( ph -> X < Y ) |
| 96 |
6 23
|
sublt0d |
|- ( ph -> ( ( X - Y ) < 0 <-> X < Y ) ) |
| 97 |
95 96
|
mpbird |
|- ( ph -> ( X - Y ) < 0 ) |
| 98 |
70 72 97
|
divlt0gt0d |
|- ( ph -> ( ( X - Y ) / T ) < 0 ) |
| 99 |
70 18 28
|
redivcld |
|- ( ph -> ( ( X - Y ) / T ) e. RR ) |
| 100 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 101 |
|
ltaddneg |
|- ( ( ( ( X - Y ) / T ) e. RR /\ 1 e. RR ) -> ( ( ( X - Y ) / T ) < 0 <-> ( 1 + ( ( X - Y ) / T ) ) < 1 ) ) |
| 102 |
99 100 101
|
syl2anc |
|- ( ph -> ( ( ( X - Y ) / T ) < 0 <-> ( 1 + ( ( X - Y ) / T ) ) < 1 ) ) |
| 103 |
98 102
|
mpbid |
|- ( ph -> ( 1 + ( ( X - Y ) / T ) ) < 1 ) |
| 104 |
54
|
flcld |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
| 105 |
104
|
zcnd |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. CC ) |
| 106 |
105 47
|
mulcld |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. CC ) |
| 107 |
35 106
|
pncan2d |
|- ( ph -> ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
| 108 |
107
|
eqcomd |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) = ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) ) |
| 109 |
108
|
oveq1d |
|- ( ph -> ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) / T ) = ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) / T ) ) |
| 110 |
105 47 28
|
divcan4d |
|- ( ph -> ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - X ) / T ) ) ) |
| 111 |
|
id |
|- ( x = X -> x = X ) |
| 112 |
|
oveq2 |
|- ( x = X -> ( B - x ) = ( B - X ) ) |
| 113 |
112
|
oveq1d |
|- ( x = X -> ( ( B - x ) / T ) = ( ( B - X ) / T ) ) |
| 114 |
113
|
fveq2d |
|- ( x = X -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - X ) / T ) ) ) |
| 115 |
114
|
oveq1d |
|- ( x = X -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
| 116 |
111 115
|
oveq12d |
|- ( x = X -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 117 |
116
|
adantl |
|- ( ( ph /\ x = X ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 118 |
|
reflcl |
|- ( ( ( B - X ) / T ) e. RR -> ( |_ ` ( ( B - X ) / T ) ) e. RR ) |
| 119 |
54 118
|
syl |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. RR ) |
| 120 |
119 18
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. RR ) |
| 121 |
6 120
|
readdcld |
|- ( ph -> ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. RR ) |
| 122 |
9 117 6 121
|
fvmptd |
|- ( ph -> ( E ` X ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
| 123 |
122
|
eqcomd |
|- ( ph -> ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( E ` X ) ) |
| 124 |
123
|
oveq1d |
|- ( ph -> ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) = ( ( E ` X ) - X ) ) |
| 125 |
124
|
oveq1d |
|- ( ph -> ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) / T ) = ( ( ( E ` X ) - X ) / T ) ) |
| 126 |
7
|
oveq1d |
|- ( ph -> ( ( E ` X ) - X ) = ( B - X ) ) |
| 127 |
126
|
oveq1d |
|- ( ph -> ( ( ( E ` X ) - X ) / T ) = ( ( B - X ) / T ) ) |
| 128 |
125 127
|
eqtrd |
|- ( ph -> ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) / T ) = ( ( B - X ) / T ) ) |
| 129 |
109 110 128
|
3eqtr3d |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) = ( ( B - X ) / T ) ) |
| 130 |
129 104
|
eqeltrrd |
|- ( ph -> ( ( B - X ) / T ) e. ZZ ) |
| 131 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 132 |
130 131
|
zsubcld |
|- ( ph -> ( ( ( B - X ) / T ) - 1 ) e. ZZ ) |
| 133 |
100 99
|
readdcld |
|- ( ph -> ( 1 + ( ( X - Y ) / T ) ) e. RR ) |
| 134 |
|
flbi2 |
|- ( ( ( ( ( B - X ) / T ) - 1 ) e. ZZ /\ ( 1 + ( ( X - Y ) / T ) ) e. RR ) -> ( ( |_ ` ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) = ( ( ( B - X ) / T ) - 1 ) <-> ( 0 <_ ( 1 + ( ( X - Y ) / T ) ) /\ ( 1 + ( ( X - Y ) / T ) ) < 1 ) ) ) |
| 135 |
132 133 134
|
syl2anc |
|- ( ph -> ( ( |_ ` ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) = ( ( ( B - X ) / T ) - 1 ) <-> ( 0 <_ ( 1 + ( ( X - Y ) / T ) ) /\ ( 1 + ( ( X - Y ) / T ) ) < 1 ) ) ) |
| 136 |
94 103 135
|
mpbir2and |
|- ( ph -> ( |_ ` ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) = ( ( ( B - X ) / T ) - 1 ) ) |
| 137 |
129
|
eqcomd |
|- ( ph -> ( ( B - X ) / T ) = ( |_ ` ( ( B - X ) / T ) ) ) |
| 138 |
137
|
oveq1d |
|- ( ph -> ( ( ( B - X ) / T ) - 1 ) = ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) ) |
| 139 |
69 136 138
|
3eqtrd |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) = ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) ) |
| 140 |
139
|
oveq1d |
|- ( ph -> ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) = ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) |
| 141 |
140
|
oveq2d |
|- ( ph -> ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) = ( Y + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) |
| 142 |
38
|
oveq1d |
|- ( ph -> ( Y + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) = ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) |
| 143 |
105 58 47
|
subdird |
|- ( ph -> ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) = ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - ( 1 x. T ) ) ) |
| 144 |
143
|
oveq2d |
|- ( ph -> ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) = ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - ( 1 x. T ) ) ) ) |
| 145 |
35 41
|
addcld |
|- ( ph -> ( X + ( Y - X ) ) e. CC ) |
| 146 |
58 47
|
mulcld |
|- ( ph -> ( 1 x. T ) e. CC ) |
| 147 |
145 106 146
|
addsubassd |
|- ( ph -> ( ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( 1 x. T ) ) = ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - ( 1 x. T ) ) ) ) |
| 148 |
147
|
eqcomd |
|- ( ph -> ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - ( 1 x. T ) ) ) = ( ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( 1 x. T ) ) ) |
| 149 |
35 41 106
|
add32d |
|- ( ph -> ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + ( Y - X ) ) ) |
| 150 |
149
|
oveq1d |
|- ( ph -> ( ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( 1 x. T ) ) = ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + ( Y - X ) ) - ( 1 x. T ) ) ) |
| 151 |
123
|
oveq1d |
|- ( ph -> ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + ( Y - X ) ) = ( ( E ` X ) + ( Y - X ) ) ) |
| 152 |
47
|
mullidd |
|- ( ph -> ( 1 x. T ) = T ) |
| 153 |
151 152
|
oveq12d |
|- ( ph -> ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + ( Y - X ) ) - ( 1 x. T ) ) = ( ( ( E ` X ) + ( Y - X ) ) - T ) ) |
| 154 |
7 2
|
eqeltrd |
|- ( ph -> ( E ` X ) e. RR ) |
| 155 |
154
|
recnd |
|- ( ph -> ( E ` X ) e. CC ) |
| 156 |
155 41 47
|
addsubd |
|- ( ph -> ( ( ( E ` X ) + ( Y - X ) ) - T ) = ( ( ( E ` X ) - T ) + ( Y - X ) ) ) |
| 157 |
7
|
oveq1d |
|- ( ph -> ( ( E ` X ) - T ) = ( B - T ) ) |
| 158 |
4
|
a1i |
|- ( ph -> T = ( B - A ) ) |
| 159 |
158
|
oveq2d |
|- ( ph -> ( B - T ) = ( B - ( B - A ) ) ) |
| 160 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 161 |
40 160
|
nncand |
|- ( ph -> ( B - ( B - A ) ) = A ) |
| 162 |
157 159 161
|
3eqtrd |
|- ( ph -> ( ( E ` X ) - T ) = A ) |
| 163 |
162
|
oveq1d |
|- ( ph -> ( ( ( E ` X ) - T ) + ( Y - X ) ) = ( A + ( Y - X ) ) ) |
| 164 |
156 163
|
eqtrd |
|- ( ph -> ( ( ( E ` X ) + ( Y - X ) ) - T ) = ( A + ( Y - X ) ) ) |
| 165 |
150 153 164
|
3eqtrd |
|- ( ph -> ( ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( 1 x. T ) ) = ( A + ( Y - X ) ) ) |
| 166 |
144 148 165
|
3eqtrd |
|- ( ph -> ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) = ( A + ( Y - X ) ) ) |
| 167 |
142 166
|
eqtrd |
|- ( ph -> ( Y + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) = ( A + ( Y - X ) ) ) |
| 168 |
34 141 167
|
3eqtrd |
|- ( ph -> ( E ` Y ) = ( A + ( Y - X ) ) ) |