Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem26.1 |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem26.2 |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem26.3 |
|- ( ph -> A < B ) |
4 |
|
fourierdlem26.4 |
|- T = ( B - A ) |
5 |
|
fourierdlem26.5 |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
6 |
|
fourierdlem26.6 |
|- ( ph -> X e. RR ) |
7 |
|
fourierdlem26.7 |
|- ( ph -> ( E ` X ) = B ) |
8 |
|
fourierdlem26.8 |
|- ( ph -> Y e. ( X (,] ( X + T ) ) ) |
9 |
5
|
a1i |
|- ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
10 |
|
simpr |
|- ( ( ph /\ x = Y ) -> x = Y ) |
11 |
10
|
oveq2d |
|- ( ( ph /\ x = Y ) -> ( B - x ) = ( B - Y ) ) |
12 |
11
|
oveq1d |
|- ( ( ph /\ x = Y ) -> ( ( B - x ) / T ) = ( ( B - Y ) / T ) ) |
13 |
12
|
fveq2d |
|- ( ( ph /\ x = Y ) -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - Y ) / T ) ) ) |
14 |
13
|
oveq1d |
|- ( ( ph /\ x = Y ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) |
15 |
10 14
|
oveq12d |
|- ( ( ph /\ x = Y ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) ) |
16 |
6
|
rexrd |
|- ( ph -> X e. RR* ) |
17 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
18 |
4 17
|
eqeltrid |
|- ( ph -> T e. RR ) |
19 |
6 18
|
readdcld |
|- ( ph -> ( X + T ) e. RR ) |
20 |
|
elioc2 |
|- ( ( X e. RR* /\ ( X + T ) e. RR ) -> ( Y e. ( X (,] ( X + T ) ) <-> ( Y e. RR /\ X < Y /\ Y <_ ( X + T ) ) ) ) |
21 |
16 19 20
|
syl2anc |
|- ( ph -> ( Y e. ( X (,] ( X + T ) ) <-> ( Y e. RR /\ X < Y /\ Y <_ ( X + T ) ) ) ) |
22 |
8 21
|
mpbid |
|- ( ph -> ( Y e. RR /\ X < Y /\ Y <_ ( X + T ) ) ) |
23 |
22
|
simp1d |
|- ( ph -> Y e. RR ) |
24 |
2 23
|
resubcld |
|- ( ph -> ( B - Y ) e. RR ) |
25 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
26 |
3 25
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
27 |
26 4
|
breqtrrdi |
|- ( ph -> 0 < T ) |
28 |
27
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
29 |
24 18 28
|
redivcld |
|- ( ph -> ( ( B - Y ) / T ) e. RR ) |
30 |
29
|
flcld |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) e. ZZ ) |
31 |
30
|
zred |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) e. RR ) |
32 |
31 18
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) e. RR ) |
33 |
23 32
|
readdcld |
|- ( ph -> ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) e. RR ) |
34 |
9 15 23 33
|
fvmptd |
|- ( ph -> ( E ` Y ) = ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) ) |
35 |
6
|
recnd |
|- ( ph -> X e. CC ) |
36 |
23
|
recnd |
|- ( ph -> Y e. CC ) |
37 |
35 36
|
pncan3d |
|- ( ph -> ( X + ( Y - X ) ) = Y ) |
38 |
37
|
eqcomd |
|- ( ph -> Y = ( X + ( Y - X ) ) ) |
39 |
38
|
oveq2d |
|- ( ph -> ( B - Y ) = ( B - ( X + ( Y - X ) ) ) ) |
40 |
2
|
recnd |
|- ( ph -> B e. CC ) |
41 |
36 35
|
subcld |
|- ( ph -> ( Y - X ) e. CC ) |
42 |
40 35 41
|
subsub4d |
|- ( ph -> ( ( B - X ) - ( Y - X ) ) = ( B - ( X + ( Y - X ) ) ) ) |
43 |
39 42
|
eqtr4d |
|- ( ph -> ( B - Y ) = ( ( B - X ) - ( Y - X ) ) ) |
44 |
43
|
oveq1d |
|- ( ph -> ( ( B - Y ) / T ) = ( ( ( B - X ) - ( Y - X ) ) / T ) ) |
45 |
2 6
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
46 |
45
|
recnd |
|- ( ph -> ( B - X ) e. CC ) |
47 |
18
|
recnd |
|- ( ph -> T e. CC ) |
48 |
46 41 47 28
|
divsubdird |
|- ( ph -> ( ( ( B - X ) - ( Y - X ) ) / T ) = ( ( ( B - X ) / T ) - ( ( Y - X ) / T ) ) ) |
49 |
41 47 28
|
divnegd |
|- ( ph -> -u ( ( Y - X ) / T ) = ( -u ( Y - X ) / T ) ) |
50 |
36 35
|
negsubdi2d |
|- ( ph -> -u ( Y - X ) = ( X - Y ) ) |
51 |
50
|
oveq1d |
|- ( ph -> ( -u ( Y - X ) / T ) = ( ( X - Y ) / T ) ) |
52 |
49 51
|
eqtrd |
|- ( ph -> -u ( ( Y - X ) / T ) = ( ( X - Y ) / T ) ) |
53 |
52
|
oveq2d |
|- ( ph -> ( ( ( B - X ) / T ) + -u ( ( Y - X ) / T ) ) = ( ( ( B - X ) / T ) + ( ( X - Y ) / T ) ) ) |
54 |
45 18 28
|
redivcld |
|- ( ph -> ( ( B - X ) / T ) e. RR ) |
55 |
54
|
recnd |
|- ( ph -> ( ( B - X ) / T ) e. CC ) |
56 |
41 47 28
|
divcld |
|- ( ph -> ( ( Y - X ) / T ) e. CC ) |
57 |
55 56
|
negsubd |
|- ( ph -> ( ( ( B - X ) / T ) + -u ( ( Y - X ) / T ) ) = ( ( ( B - X ) / T ) - ( ( Y - X ) / T ) ) ) |
58 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
59 |
55 58
|
npcand |
|- ( ph -> ( ( ( ( B - X ) / T ) - 1 ) + 1 ) = ( ( B - X ) / T ) ) |
60 |
59
|
eqcomd |
|- ( ph -> ( ( B - X ) / T ) = ( ( ( ( B - X ) / T ) - 1 ) + 1 ) ) |
61 |
60
|
oveq1d |
|- ( ph -> ( ( ( B - X ) / T ) + ( ( X - Y ) / T ) ) = ( ( ( ( ( B - X ) / T ) - 1 ) + 1 ) + ( ( X - Y ) / T ) ) ) |
62 |
55 58
|
subcld |
|- ( ph -> ( ( ( B - X ) / T ) - 1 ) e. CC ) |
63 |
35 36
|
subcld |
|- ( ph -> ( X - Y ) e. CC ) |
64 |
63 47 28
|
divcld |
|- ( ph -> ( ( X - Y ) / T ) e. CC ) |
65 |
62 58 64
|
addassd |
|- ( ph -> ( ( ( ( ( B - X ) / T ) - 1 ) + 1 ) + ( ( X - Y ) / T ) ) = ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) |
66 |
61 65
|
eqtrd |
|- ( ph -> ( ( ( B - X ) / T ) + ( ( X - Y ) / T ) ) = ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) |
67 |
53 57 66
|
3eqtr3d |
|- ( ph -> ( ( ( B - X ) / T ) - ( ( Y - X ) / T ) ) = ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) |
68 |
44 48 67
|
3eqtrd |
|- ( ph -> ( ( B - Y ) / T ) = ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) |
69 |
68
|
fveq2d |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) = ( |_ ` ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) ) |
70 |
6 23
|
resubcld |
|- ( ph -> ( X - Y ) e. RR ) |
71 |
18 70
|
readdcld |
|- ( ph -> ( T + ( X - Y ) ) e. RR ) |
72 |
18 27
|
elrpd |
|- ( ph -> T e. RR+ ) |
73 |
35 47
|
addcomd |
|- ( ph -> ( X + T ) = ( T + X ) ) |
74 |
73
|
oveq2d |
|- ( ph -> ( X (,] ( X + T ) ) = ( X (,] ( T + X ) ) ) |
75 |
8 74
|
eleqtrd |
|- ( ph -> Y e. ( X (,] ( T + X ) ) ) |
76 |
18 6
|
readdcld |
|- ( ph -> ( T + X ) e. RR ) |
77 |
|
elioc2 |
|- ( ( X e. RR* /\ ( T + X ) e. RR ) -> ( Y e. ( X (,] ( T + X ) ) <-> ( Y e. RR /\ X < Y /\ Y <_ ( T + X ) ) ) ) |
78 |
16 76 77
|
syl2anc |
|- ( ph -> ( Y e. ( X (,] ( T + X ) ) <-> ( Y e. RR /\ X < Y /\ Y <_ ( T + X ) ) ) ) |
79 |
75 78
|
mpbid |
|- ( ph -> ( Y e. RR /\ X < Y /\ Y <_ ( T + X ) ) ) |
80 |
79
|
simp3d |
|- ( ph -> Y <_ ( T + X ) ) |
81 |
23 6 18
|
lesubaddd |
|- ( ph -> ( ( Y - X ) <_ T <-> Y <_ ( T + X ) ) ) |
82 |
80 81
|
mpbird |
|- ( ph -> ( Y - X ) <_ T ) |
83 |
23 6
|
resubcld |
|- ( ph -> ( Y - X ) e. RR ) |
84 |
18 83
|
subge0d |
|- ( ph -> ( 0 <_ ( T - ( Y - X ) ) <-> ( Y - X ) <_ T ) ) |
85 |
82 84
|
mpbird |
|- ( ph -> 0 <_ ( T - ( Y - X ) ) ) |
86 |
47 36 35
|
subsub2d |
|- ( ph -> ( T - ( Y - X ) ) = ( T + ( X - Y ) ) ) |
87 |
85 86
|
breqtrd |
|- ( ph -> 0 <_ ( T + ( X - Y ) ) ) |
88 |
71 72 87
|
divge0d |
|- ( ph -> 0 <_ ( ( T + ( X - Y ) ) / T ) ) |
89 |
47 63 47 28
|
divdird |
|- ( ph -> ( ( T + ( X - Y ) ) / T ) = ( ( T / T ) + ( ( X - Y ) / T ) ) ) |
90 |
47 28
|
dividd |
|- ( ph -> ( T / T ) = 1 ) |
91 |
90
|
eqcomd |
|- ( ph -> 1 = ( T / T ) ) |
92 |
91
|
oveq1d |
|- ( ph -> ( 1 + ( ( X - Y ) / T ) ) = ( ( T / T ) + ( ( X - Y ) / T ) ) ) |
93 |
89 92
|
eqtr4d |
|- ( ph -> ( ( T + ( X - Y ) ) / T ) = ( 1 + ( ( X - Y ) / T ) ) ) |
94 |
88 93
|
breqtrd |
|- ( ph -> 0 <_ ( 1 + ( ( X - Y ) / T ) ) ) |
95 |
22
|
simp2d |
|- ( ph -> X < Y ) |
96 |
6 23
|
sublt0d |
|- ( ph -> ( ( X - Y ) < 0 <-> X < Y ) ) |
97 |
95 96
|
mpbird |
|- ( ph -> ( X - Y ) < 0 ) |
98 |
70 72 97
|
divlt0gt0d |
|- ( ph -> ( ( X - Y ) / T ) < 0 ) |
99 |
70 18 28
|
redivcld |
|- ( ph -> ( ( X - Y ) / T ) e. RR ) |
100 |
|
1red |
|- ( ph -> 1 e. RR ) |
101 |
|
ltaddneg |
|- ( ( ( ( X - Y ) / T ) e. RR /\ 1 e. RR ) -> ( ( ( X - Y ) / T ) < 0 <-> ( 1 + ( ( X - Y ) / T ) ) < 1 ) ) |
102 |
99 100 101
|
syl2anc |
|- ( ph -> ( ( ( X - Y ) / T ) < 0 <-> ( 1 + ( ( X - Y ) / T ) ) < 1 ) ) |
103 |
98 102
|
mpbid |
|- ( ph -> ( 1 + ( ( X - Y ) / T ) ) < 1 ) |
104 |
54
|
flcld |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
105 |
104
|
zcnd |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. CC ) |
106 |
105 47
|
mulcld |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. CC ) |
107 |
35 106
|
pncan2d |
|- ( ph -> ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
108 |
107
|
eqcomd |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) = ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) ) |
109 |
108
|
oveq1d |
|- ( ph -> ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) / T ) = ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) / T ) ) |
110 |
105 47 28
|
divcan4d |
|- ( ph -> ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - X ) / T ) ) ) |
111 |
|
id |
|- ( x = X -> x = X ) |
112 |
|
oveq2 |
|- ( x = X -> ( B - x ) = ( B - X ) ) |
113 |
112
|
oveq1d |
|- ( x = X -> ( ( B - x ) / T ) = ( ( B - X ) / T ) ) |
114 |
113
|
fveq2d |
|- ( x = X -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - X ) / T ) ) ) |
115 |
114
|
oveq1d |
|- ( x = X -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
116 |
111 115
|
oveq12d |
|- ( x = X -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
117 |
116
|
adantl |
|- ( ( ph /\ x = X ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
118 |
|
reflcl |
|- ( ( ( B - X ) / T ) e. RR -> ( |_ ` ( ( B - X ) / T ) ) e. RR ) |
119 |
54 118
|
syl |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. RR ) |
120 |
119 18
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. RR ) |
121 |
6 120
|
readdcld |
|- ( ph -> ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. RR ) |
122 |
9 117 6 121
|
fvmptd |
|- ( ph -> ( E ` X ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
123 |
122
|
eqcomd |
|- ( ph -> ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( E ` X ) ) |
124 |
123
|
oveq1d |
|- ( ph -> ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) = ( ( E ` X ) - X ) ) |
125 |
124
|
oveq1d |
|- ( ph -> ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) / T ) = ( ( ( E ` X ) - X ) / T ) ) |
126 |
7
|
oveq1d |
|- ( ph -> ( ( E ` X ) - X ) = ( B - X ) ) |
127 |
126
|
oveq1d |
|- ( ph -> ( ( ( E ` X ) - X ) / T ) = ( ( B - X ) / T ) ) |
128 |
125 127
|
eqtrd |
|- ( ph -> ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) / T ) = ( ( B - X ) / T ) ) |
129 |
109 110 128
|
3eqtr3d |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) = ( ( B - X ) / T ) ) |
130 |
129 104
|
eqeltrrd |
|- ( ph -> ( ( B - X ) / T ) e. ZZ ) |
131 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
132 |
130 131
|
zsubcld |
|- ( ph -> ( ( ( B - X ) / T ) - 1 ) e. ZZ ) |
133 |
100 99
|
readdcld |
|- ( ph -> ( 1 + ( ( X - Y ) / T ) ) e. RR ) |
134 |
|
flbi2 |
|- ( ( ( ( ( B - X ) / T ) - 1 ) e. ZZ /\ ( 1 + ( ( X - Y ) / T ) ) e. RR ) -> ( ( |_ ` ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) = ( ( ( B - X ) / T ) - 1 ) <-> ( 0 <_ ( 1 + ( ( X - Y ) / T ) ) /\ ( 1 + ( ( X - Y ) / T ) ) < 1 ) ) ) |
135 |
132 133 134
|
syl2anc |
|- ( ph -> ( ( |_ ` ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) = ( ( ( B - X ) / T ) - 1 ) <-> ( 0 <_ ( 1 + ( ( X - Y ) / T ) ) /\ ( 1 + ( ( X - Y ) / T ) ) < 1 ) ) ) |
136 |
94 103 135
|
mpbir2and |
|- ( ph -> ( |_ ` ( ( ( ( B - X ) / T ) - 1 ) + ( 1 + ( ( X - Y ) / T ) ) ) ) = ( ( ( B - X ) / T ) - 1 ) ) |
137 |
129
|
eqcomd |
|- ( ph -> ( ( B - X ) / T ) = ( |_ ` ( ( B - X ) / T ) ) ) |
138 |
137
|
oveq1d |
|- ( ph -> ( ( ( B - X ) / T ) - 1 ) = ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) ) |
139 |
69 136 138
|
3eqtrd |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) = ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) ) |
140 |
139
|
oveq1d |
|- ( ph -> ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) = ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) |
141 |
140
|
oveq2d |
|- ( ph -> ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) = ( Y + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) |
142 |
38
|
oveq1d |
|- ( ph -> ( Y + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) = ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) |
143 |
105 58 47
|
subdird |
|- ( ph -> ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) = ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - ( 1 x. T ) ) ) |
144 |
143
|
oveq2d |
|- ( ph -> ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) = ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - ( 1 x. T ) ) ) ) |
145 |
35 41
|
addcld |
|- ( ph -> ( X + ( Y - X ) ) e. CC ) |
146 |
58 47
|
mulcld |
|- ( ph -> ( 1 x. T ) e. CC ) |
147 |
145 106 146
|
addsubassd |
|- ( ph -> ( ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( 1 x. T ) ) = ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - ( 1 x. T ) ) ) ) |
148 |
147
|
eqcomd |
|- ( ph -> ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - ( 1 x. T ) ) ) = ( ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( 1 x. T ) ) ) |
149 |
35 41 106
|
add32d |
|- ( ph -> ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) = ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + ( Y - X ) ) ) |
150 |
149
|
oveq1d |
|- ( ph -> ( ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( 1 x. T ) ) = ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + ( Y - X ) ) - ( 1 x. T ) ) ) |
151 |
123
|
oveq1d |
|- ( ph -> ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + ( Y - X ) ) = ( ( E ` X ) + ( Y - X ) ) ) |
152 |
47
|
mulid2d |
|- ( ph -> ( 1 x. T ) = T ) |
153 |
151 152
|
oveq12d |
|- ( ph -> ( ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) + ( Y - X ) ) - ( 1 x. T ) ) = ( ( ( E ` X ) + ( Y - X ) ) - T ) ) |
154 |
7 2
|
eqeltrd |
|- ( ph -> ( E ` X ) e. RR ) |
155 |
154
|
recnd |
|- ( ph -> ( E ` X ) e. CC ) |
156 |
155 41 47
|
addsubd |
|- ( ph -> ( ( ( E ` X ) + ( Y - X ) ) - T ) = ( ( ( E ` X ) - T ) + ( Y - X ) ) ) |
157 |
7
|
oveq1d |
|- ( ph -> ( ( E ` X ) - T ) = ( B - T ) ) |
158 |
4
|
a1i |
|- ( ph -> T = ( B - A ) ) |
159 |
158
|
oveq2d |
|- ( ph -> ( B - T ) = ( B - ( B - A ) ) ) |
160 |
1
|
recnd |
|- ( ph -> A e. CC ) |
161 |
40 160
|
nncand |
|- ( ph -> ( B - ( B - A ) ) = A ) |
162 |
157 159 161
|
3eqtrd |
|- ( ph -> ( ( E ` X ) - T ) = A ) |
163 |
162
|
oveq1d |
|- ( ph -> ( ( ( E ` X ) - T ) + ( Y - X ) ) = ( A + ( Y - X ) ) ) |
164 |
156 163
|
eqtrd |
|- ( ph -> ( ( ( E ` X ) + ( Y - X ) ) - T ) = ( A + ( Y - X ) ) ) |
165 |
150 153 164
|
3eqtrd |
|- ( ph -> ( ( ( X + ( Y - X ) ) + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - ( 1 x. T ) ) = ( A + ( Y - X ) ) ) |
166 |
144 148 165
|
3eqtrd |
|- ( ph -> ( ( X + ( Y - X ) ) + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) = ( A + ( Y - X ) ) ) |
167 |
142 166
|
eqtrd |
|- ( ph -> ( Y + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) = ( A + ( Y - X ) ) ) |
168 |
34 141 167
|
3eqtrd |
|- ( ph -> ( E ` Y ) = ( A + ( Y - X ) ) ) |