| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasf1obl.u |
|- ( ph -> U = ( F "s R ) ) |
| 2 |
|
imasf1obl.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
imasf1obl.f |
|- ( ph -> F : V -1-1-onto-> B ) |
| 4 |
|
imasf1obl.r |
|- ( ph -> R e. Z ) |
| 5 |
|
imasf1obl.e |
|- E = ( ( dist ` R ) |` ( V X. V ) ) |
| 6 |
|
imasf1obl.d |
|- D = ( dist ` U ) |
| 7 |
|
imasf1obl.m |
|- ( ph -> E e. ( *Met ` V ) ) |
| 8 |
|
imasf1obl.x |
|- ( ph -> P e. V ) |
| 9 |
|
imasf1obl.s |
|- ( ph -> S e. RR* ) |
| 10 |
|
f1ocnvfv2 |
|- ( ( F : V -1-1-onto-> B /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
| 11 |
3 10
|
sylan |
|- ( ( ph /\ x e. B ) -> ( F ` ( `' F ` x ) ) = x ) |
| 12 |
11
|
oveq2d |
|- ( ( ph /\ x e. B ) -> ( ( F ` P ) D ( F ` ( `' F ` x ) ) ) = ( ( F ` P ) D x ) ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> U = ( F "s R ) ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ x e. B ) -> V = ( Base ` R ) ) |
| 15 |
3
|
adantr |
|- ( ( ph /\ x e. B ) -> F : V -1-1-onto-> B ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ x e. B ) -> R e. Z ) |
| 17 |
7
|
adantr |
|- ( ( ph /\ x e. B ) -> E e. ( *Met ` V ) ) |
| 18 |
8
|
adantr |
|- ( ( ph /\ x e. B ) -> P e. V ) |
| 19 |
|
f1ocnv |
|- ( F : V -1-1-onto-> B -> `' F : B -1-1-onto-> V ) |
| 20 |
3 19
|
syl |
|- ( ph -> `' F : B -1-1-onto-> V ) |
| 21 |
|
f1of |
|- ( `' F : B -1-1-onto-> V -> `' F : B --> V ) |
| 22 |
20 21
|
syl |
|- ( ph -> `' F : B --> V ) |
| 23 |
22
|
ffvelcdmda |
|- ( ( ph /\ x e. B ) -> ( `' F ` x ) e. V ) |
| 24 |
13 14 15 16 5 6 17 18 23
|
imasdsf1o |
|- ( ( ph /\ x e. B ) -> ( ( F ` P ) D ( F ` ( `' F ` x ) ) ) = ( P E ( `' F ` x ) ) ) |
| 25 |
12 24
|
eqtr3d |
|- ( ( ph /\ x e. B ) -> ( ( F ` P ) D x ) = ( P E ( `' F ` x ) ) ) |
| 26 |
25
|
breq1d |
|- ( ( ph /\ x e. B ) -> ( ( ( F ` P ) D x ) < S <-> ( P E ( `' F ` x ) ) < S ) ) |
| 27 |
9
|
adantr |
|- ( ( ph /\ x e. B ) -> S e. RR* ) |
| 28 |
|
elbl2 |
|- ( ( ( E e. ( *Met ` V ) /\ S e. RR* ) /\ ( P e. V /\ ( `' F ` x ) e. V ) ) -> ( ( `' F ` x ) e. ( P ( ball ` E ) S ) <-> ( P E ( `' F ` x ) ) < S ) ) |
| 29 |
17 27 18 23 28
|
syl22anc |
|- ( ( ph /\ x e. B ) -> ( ( `' F ` x ) e. ( P ( ball ` E ) S ) <-> ( P E ( `' F ` x ) ) < S ) ) |
| 30 |
26 29
|
bitr4d |
|- ( ( ph /\ x e. B ) -> ( ( ( F ` P ) D x ) < S <-> ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) |
| 31 |
30
|
pm5.32da |
|- ( ph -> ( ( x e. B /\ ( ( F ` P ) D x ) < S ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
| 32 |
1 2 3 4 5 6 7
|
imasf1oxmet |
|- ( ph -> D e. ( *Met ` B ) ) |
| 33 |
|
f1of |
|- ( F : V -1-1-onto-> B -> F : V --> B ) |
| 34 |
3 33
|
syl |
|- ( ph -> F : V --> B ) |
| 35 |
34 8
|
ffvelcdmd |
|- ( ph -> ( F ` P ) e. B ) |
| 36 |
|
elbl |
|- ( ( D e. ( *Met ` B ) /\ ( F ` P ) e. B /\ S e. RR* ) -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> ( x e. B /\ ( ( F ` P ) D x ) < S ) ) ) |
| 37 |
32 35 9 36
|
syl3anc |
|- ( ph -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> ( x e. B /\ ( ( F ` P ) D x ) < S ) ) ) |
| 38 |
|
f1ofn |
|- ( `' F : B -1-1-onto-> V -> `' F Fn B ) |
| 39 |
|
elpreima |
|- ( `' F Fn B -> ( x e. ( `' `' F " ( P ( ball ` E ) S ) ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
| 40 |
20 38 39
|
3syl |
|- ( ph -> ( x e. ( `' `' F " ( P ( ball ` E ) S ) ) <-> ( x e. B /\ ( `' F ` x ) e. ( P ( ball ` E ) S ) ) ) ) |
| 41 |
31 37 40
|
3bitr4d |
|- ( ph -> ( x e. ( ( F ` P ) ( ball ` D ) S ) <-> x e. ( `' `' F " ( P ( ball ` E ) S ) ) ) ) |
| 42 |
41
|
eqrdv |
|- ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( `' `' F " ( P ( ball ` E ) S ) ) ) |
| 43 |
|
imacnvcnv |
|- ( `' `' F " ( P ( ball ` E ) S ) ) = ( F " ( P ( ball ` E ) S ) ) |
| 44 |
42 43
|
eqtrdi |
|- ( ph -> ( ( F ` P ) ( ball ` D ) S ) = ( F " ( P ( ball ` E ) S ) ) ) |