| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasf1obl.u |
|- ( ph -> U = ( F "s R ) ) |
| 2 |
|
imasf1obl.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
imasf1obl.f |
|- ( ph -> F : V -1-1-onto-> B ) |
| 4 |
|
imasf1oxms.r |
|- ( ph -> R e. *MetSp ) |
| 5 |
|
eqid |
|- ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( V X. V ) ) |
| 6 |
|
eqid |
|- ( dist ` U ) = ( dist ` U ) |
| 7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 8 |
|
eqid |
|- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
| 9 |
7 8
|
xmsxmet |
|- ( R e. *MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
| 10 |
4 9
|
syl |
|- ( ph -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( *Met ` ( Base ` R ) ) ) |
| 11 |
2
|
sqxpeqd |
|- ( ph -> ( V X. V ) = ( ( Base ` R ) X. ( Base ` R ) ) ) |
| 12 |
11
|
reseq2d |
|- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
| 13 |
2
|
fveq2d |
|- ( ph -> ( *Met ` V ) = ( *Met ` ( Base ` R ) ) ) |
| 14 |
10 12 13
|
3eltr4d |
|- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
| 15 |
1 2 3 4 5 6 14
|
imasf1oxmet |
|- ( ph -> ( dist ` U ) e. ( *Met ` B ) ) |
| 16 |
|
f1ofo |
|- ( F : V -1-1-onto-> B -> F : V -onto-> B ) |
| 17 |
3 16
|
syl |
|- ( ph -> F : V -onto-> B ) |
| 18 |
1 2 17 4
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
| 19 |
18
|
fveq2d |
|- ( ph -> ( *Met ` B ) = ( *Met ` ( Base ` U ) ) ) |
| 20 |
15 19
|
eleqtrd |
|- ( ph -> ( dist ` U ) e. ( *Met ` ( Base ` U ) ) ) |
| 21 |
|
ssid |
|- ( Base ` U ) C_ ( Base ` U ) |
| 22 |
|
xmetres2 |
|- ( ( ( dist ` U ) e. ( *Met ` ( Base ` U ) ) /\ ( Base ` U ) C_ ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) ) |
| 23 |
20 21 22
|
sylancl |
|- ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) ) |
| 24 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
| 25 |
|
eqid |
|- ( TopOpen ` U ) = ( TopOpen ` U ) |
| 26 |
1 2 17 4 24 25
|
imastopn |
|- ( ph -> ( TopOpen ` U ) = ( ( TopOpen ` R ) qTop F ) ) |
| 27 |
24 7 8
|
xmstopn |
|- ( R e. *MetSp -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
| 28 |
4 27
|
syl |
|- ( ph -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
| 29 |
12
|
fveq2d |
|- ( ph -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) |
| 30 |
28 29
|
eqtr4d |
|- ( ph -> ( TopOpen ` R ) = ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) ) |
| 31 |
30
|
oveq1d |
|- ( ph -> ( ( TopOpen ` R ) qTop F ) = ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) |
| 32 |
|
blbas |
|- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases ) |
| 33 |
14 32
|
syl |
|- ( ph -> ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases ) |
| 34 |
|
unirnbl |
|- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = V ) |
| 35 |
|
f1oeq2 |
|- ( U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = V -> ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B <-> F : V -1-1-onto-> B ) ) |
| 36 |
14 34 35
|
3syl |
|- ( ph -> ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B <-> F : V -1-1-onto-> B ) ) |
| 37 |
3 36
|
mpbird |
|- ( ph -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B ) |
| 38 |
|
eqid |
|- U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) = U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) |
| 39 |
38
|
tgqtop |
|- ( ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases /\ F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B ) -> ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
| 40 |
33 37 39
|
syl2anc |
|- ( ph -> ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
| 41 |
|
eqid |
|- ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) |
| 42 |
41
|
mopnval |
|- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) |
| 43 |
14 42
|
syl |
|- ( ph -> ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) = ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) |
| 44 |
43
|
oveq1d |
|- ( ph -> ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ( ( topGen ` ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) qTop F ) ) |
| 45 |
|
eqid |
|- ( MetOpen ` ( dist ` U ) ) = ( MetOpen ` ( dist ` U ) ) |
| 46 |
45
|
mopnval |
|- ( ( dist ` U ) e. ( *Met ` B ) -> ( MetOpen ` ( dist ` U ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
| 47 |
15 46
|
syl |
|- ( ph -> ( MetOpen ` ( dist ` U ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
| 48 |
|
xmetf |
|- ( ( dist ` U ) e. ( *Met ` ( Base ` U ) ) -> ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* ) |
| 49 |
20 48
|
syl |
|- ( ph -> ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* ) |
| 50 |
|
ffn |
|- ( ( dist ` U ) : ( ( Base ` U ) X. ( Base ` U ) ) --> RR* -> ( dist ` U ) Fn ( ( Base ` U ) X. ( Base ` U ) ) ) |
| 51 |
|
fnresdm |
|- ( ( dist ` U ) Fn ( ( Base ` U ) X. ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( dist ` U ) ) |
| 52 |
49 50 51
|
3syl |
|- ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( dist ` U ) ) |
| 53 |
52
|
fveq2d |
|- ( ph -> ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) = ( MetOpen ` ( dist ` U ) ) ) |
| 54 |
3
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -1-1-onto-> B ) |
| 55 |
|
f1of1 |
|- ( F : V -1-1-onto-> B -> F : V -1-1-> B ) |
| 56 |
54 55
|
syl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -1-1-> B ) |
| 57 |
|
cnvimass |
|- ( `' F " x ) C_ dom F |
| 58 |
|
f1odm |
|- ( F : V -1-1-onto-> B -> dom F = V ) |
| 59 |
54 58
|
syl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> dom F = V ) |
| 60 |
57 59
|
sseqtrid |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( `' F " x ) C_ V ) |
| 61 |
14
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
| 62 |
|
simprl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> y e. V ) |
| 63 |
|
simprr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> r e. RR* ) |
| 64 |
|
blssm |
|- ( ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) /\ y e. V /\ r e. RR* ) -> ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) |
| 65 |
61 62 63 64
|
syl3anc |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) |
| 66 |
|
f1imaeq |
|- ( ( F : V -1-1-> B /\ ( ( `' F " x ) C_ V /\ ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) C_ V ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
| 67 |
56 60 65 66
|
syl12anc |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
| 68 |
54 16
|
syl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> F : V -onto-> B ) |
| 69 |
|
simplr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> x C_ B ) |
| 70 |
|
foimacnv |
|- ( ( F : V -onto-> B /\ x C_ B ) -> ( F " ( `' F " x ) ) = x ) |
| 71 |
68 69 70
|
syl2anc |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( F " ( `' F " x ) ) = x ) |
| 72 |
1
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> U = ( F "s R ) ) |
| 73 |
2
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> V = ( Base ` R ) ) |
| 74 |
4
|
ad2antrr |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> R e. *MetSp ) |
| 75 |
72 73 54 74 5 6 61 62 63
|
imasf1obl |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
| 76 |
75
|
eqcomd |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) |
| 77 |
71 76
|
eqeq12d |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( F " ( `' F " x ) ) = ( F " ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 78 |
67 77
|
bitr3d |
|- ( ( ( ph /\ x C_ B ) /\ ( y e. V /\ r e. RR* ) ) -> ( ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 79 |
78
|
2rexbidva |
|- ( ( ph /\ x C_ B ) -> ( E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 80 |
3
|
adantr |
|- ( ( ph /\ x C_ B ) -> F : V -1-1-onto-> B ) |
| 81 |
|
f1ofn |
|- ( F : V -1-1-onto-> B -> F Fn V ) |
| 82 |
|
oveq1 |
|- ( z = ( F ` y ) -> ( z ( ball ` ( dist ` U ) ) r ) = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) |
| 83 |
82
|
eqeq2d |
|- ( z = ( F ` y ) -> ( x = ( z ( ball ` ( dist ` U ) ) r ) <-> x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 84 |
83
|
rexbidv |
|- ( z = ( F ` y ) -> ( E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 85 |
84
|
rexrn |
|- ( F Fn V -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 86 |
80 81 85
|
3syl |
|- ( ( ph /\ x C_ B ) -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. y e. V E. r e. RR* x = ( ( F ` y ) ( ball ` ( dist ` U ) ) r ) ) ) |
| 87 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
| 88 |
80 16 87
|
3syl |
|- ( ( ph /\ x C_ B ) -> ran F = B ) |
| 89 |
88
|
rexeqdv |
|- ( ( ph /\ x C_ B ) -> ( E. z e. ran F E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
| 90 |
79 86 89
|
3bitr2d |
|- ( ( ph /\ x C_ B ) -> ( E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
| 91 |
14
|
adantr |
|- ( ( ph /\ x C_ B ) -> ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) ) |
| 92 |
|
blrn |
|- ( ( ( dist ` R ) |` ( V X. V ) ) e. ( *Met ` V ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
| 93 |
91 92
|
syl |
|- ( ( ph /\ x C_ B ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> E. y e. V E. r e. RR* ( `' F " x ) = ( y ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) r ) ) ) |
| 94 |
15
|
adantr |
|- ( ( ph /\ x C_ B ) -> ( dist ` U ) e. ( *Met ` B ) ) |
| 95 |
|
blrn |
|- ( ( dist ` U ) e. ( *Met ` B ) -> ( x e. ran ( ball ` ( dist ` U ) ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
| 96 |
94 95
|
syl |
|- ( ( ph /\ x C_ B ) -> ( x e. ran ( ball ` ( dist ` U ) ) <-> E. z e. B E. r e. RR* x = ( z ( ball ` ( dist ` U ) ) r ) ) ) |
| 97 |
90 93 96
|
3bitr4d |
|- ( ( ph /\ x C_ B ) -> ( ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) <-> x e. ran ( ball ` ( dist ` U ) ) ) ) |
| 98 |
97
|
pm5.32da |
|- ( ph -> ( ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) <-> ( x C_ B /\ x e. ran ( ball ` ( dist ` U ) ) ) ) ) |
| 99 |
|
f1ofo |
|- ( F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -1-1-onto-> B -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) |
| 100 |
37 99
|
syl |
|- ( ph -> F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) |
| 101 |
38
|
elqtop2 |
|- ( ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) e. TopBases /\ F : U. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) -onto-> B ) -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) ) |
| 102 |
33 100 101
|
syl2anc |
|- ( ph -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> ( x C_ B /\ ( `' F " x ) e. ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) ) ) ) |
| 103 |
|
blf |
|- ( ( dist ` U ) e. ( *Met ` B ) -> ( ball ` ( dist ` U ) ) : ( B X. RR* ) --> ~P B ) |
| 104 |
|
frn |
|- ( ( ball ` ( dist ` U ) ) : ( B X. RR* ) --> ~P B -> ran ( ball ` ( dist ` U ) ) C_ ~P B ) |
| 105 |
15 103 104
|
3syl |
|- ( ph -> ran ( ball ` ( dist ` U ) ) C_ ~P B ) |
| 106 |
105
|
sseld |
|- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) -> x e. ~P B ) ) |
| 107 |
|
elpwi |
|- ( x e. ~P B -> x C_ B ) |
| 108 |
106 107
|
syl6 |
|- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) -> x C_ B ) ) |
| 109 |
108
|
pm4.71rd |
|- ( ph -> ( x e. ran ( ball ` ( dist ` U ) ) <-> ( x C_ B /\ x e. ran ( ball ` ( dist ` U ) ) ) ) ) |
| 110 |
98 102 109
|
3bitr4d |
|- ( ph -> ( x e. ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) <-> x e. ran ( ball ` ( dist ` U ) ) ) ) |
| 111 |
110
|
eqrdv |
|- ( ph -> ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ran ( ball ` ( dist ` U ) ) ) |
| 112 |
111
|
fveq2d |
|- ( ph -> ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) = ( topGen ` ran ( ball ` ( dist ` U ) ) ) ) |
| 113 |
47 53 112
|
3eqtr4d |
|- ( ph -> ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) = ( topGen ` ( ran ( ball ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) ) ) |
| 114 |
40 44 113
|
3eqtr4d |
|- ( ph -> ( ( MetOpen ` ( ( dist ` R ) |` ( V X. V ) ) ) qTop F ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) |
| 115 |
26 31 114
|
3eqtrd |
|- ( ph -> ( TopOpen ` U ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) |
| 116 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 117 |
|
eqid |
|- ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) |
| 118 |
25 116 117
|
isxms2 |
|- ( U e. *MetSp <-> ( ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( *Met ` ( Base ` U ) ) /\ ( TopOpen ` U ) = ( MetOpen ` ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) ) ) ) |
| 119 |
23 115 118
|
sylanbrc |
|- ( ph -> U e. *MetSp ) |