| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasf1obl.u |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 2 |
|
imasf1obl.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
imasf1obl.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 4 |
|
imasf1obl.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
| 5 |
|
imasf1obl.e |
⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
| 6 |
|
imasf1obl.d |
⊢ 𝐷 = ( dist ‘ 𝑈 ) |
| 7 |
|
imasf1obl.m |
⊢ ( 𝜑 → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 8 |
|
imasf1obl.x |
⊢ ( 𝜑 → 𝑃 ∈ 𝑉 ) |
| 9 |
|
imasf1obl.s |
⊢ ( 𝜑 → 𝑆 ∈ ℝ* ) |
| 10 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 11 |
3 10
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 12 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) = ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑈 = ( 𝐹 “s 𝑅 ) ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 15 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐹 : 𝑉 –1-1-onto→ 𝐵 ) |
| 16 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ 𝑍 ) |
| 17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
| 18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑃 ∈ 𝑉 ) |
| 19 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝑉 ) |
| 20 |
3 19
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝑉 ) |
| 21 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝑉 → ◡ 𝐹 : 𝐵 ⟶ 𝑉 ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐵 ⟶ 𝑉 ) |
| 23 |
22
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑉 ) |
| 24 |
13 14 15 16 5 6 17 18 23
|
imasdsf1o |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ) = ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 25 |
12 24
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) = ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
| 26 |
25
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ↔ ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) < 𝑆 ) ) |
| 27 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ ℝ* ) |
| 28 |
|
elbl2 |
⊢ ( ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ 𝑆 ∈ ℝ* ) ∧ ( 𝑃 ∈ 𝑉 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑉 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ↔ ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) < 𝑆 ) ) |
| 29 |
17 27 18 23 28
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ↔ ( 𝑃 𝐸 ( ◡ 𝐹 ‘ 𝑥 ) ) < 𝑆 ) ) |
| 30 |
26 29
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) |
| 31 |
30
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) ) |
| 32 |
1 2 3 4 5 6 7
|
imasf1oxmet |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
| 33 |
|
f1of |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝐵 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 34 |
3 33
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝐵 ) |
| 35 |
34 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ) |
| 36 |
|
elbl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐵 ∧ 𝑆 ∈ ℝ* ) → ( 𝑥 ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ) ) ) |
| 37 |
32 35 9 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑃 ) 𝐷 𝑥 ) < 𝑆 ) ) ) |
| 38 |
|
f1ofn |
⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝑉 → ◡ 𝐹 Fn 𝐵 ) |
| 39 |
|
elpreima |
⊢ ( ◡ 𝐹 Fn 𝐵 → ( 𝑥 ∈ ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) ) |
| 40 |
20 38 39
|
3syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) ) |
| 41 |
31 37 40
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) ↔ 𝑥 ∈ ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) ) |
| 42 |
41
|
eqrdv |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) = ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) |
| 43 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) = ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) |
| 44 |
42 43
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑃 ) ( ball ‘ 𝐷 ) 𝑆 ) = ( 𝐹 “ ( 𝑃 ( ball ‘ 𝐸 ) 𝑆 ) ) ) |