| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgsin0pilem1.1 |  |-  C = ( t e. ( 0 [,] _pi ) |-> -u ( cos ` t ) ) | 
						
							| 2 |  | fveq2 |  |-  ( t = x -> ( cos ` t ) = ( cos ` x ) ) | 
						
							| 3 | 2 | negeqd |  |-  ( t = x -> -u ( cos ` t ) = -u ( cos ` x ) ) | 
						
							| 4 | 3 | cbvmptv |  |-  ( t e. ( 0 [,] _pi ) |-> -u ( cos ` t ) ) = ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) | 
						
							| 5 | 1 4 | eqtri |  |-  C = ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) | 
						
							| 6 | 5 | oveq2i |  |-  ( RR _D C ) = ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) | 
						
							| 7 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 8 | 7 | a1i |  |-  ( T. -> RR C_ CC ) | 
						
							| 9 |  | 0re |  |-  0 e. RR | 
						
							| 10 |  | pire |  |-  _pi e. RR | 
						
							| 11 |  | iccssre |  |-  ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) | 
						
							| 12 | 9 10 11 | mp2an |  |-  ( 0 [,] _pi ) C_ RR | 
						
							| 13 | 12 | a1i |  |-  ( T. -> ( 0 [,] _pi ) C_ RR ) | 
						
							| 14 | 12 7 | sstri |  |-  ( 0 [,] _pi ) C_ CC | 
						
							| 15 | 14 | sseli |  |-  ( x e. ( 0 [,] _pi ) -> x e. CC ) | 
						
							| 16 | 15 | coscld |  |-  ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. CC ) | 
						
							| 17 | 16 | adantl |  |-  ( ( T. /\ x e. ( 0 [,] _pi ) ) -> ( cos ` x ) e. CC ) | 
						
							| 18 | 17 | negcld |  |-  ( ( T. /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) e. CC ) | 
						
							| 19 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 20 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 21 |  | iccntr |  |-  ( ( 0 e. RR /\ _pi e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) | 
						
							| 22 | 9 10 21 | mp2an |  |-  ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) | 
						
							| 23 | 22 | a1i |  |-  ( T. -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) | 
						
							| 24 | 8 13 18 19 20 23 | dvmptntr |  |-  ( T. -> ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) ) | 
						
							| 25 | 24 | mptru |  |-  ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) | 
						
							| 26 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 27 | 26 | a1i |  |-  ( T. -> RR e. { RR , CC } ) | 
						
							| 28 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 29 | 28 | coscld |  |-  ( x e. RR -> ( cos ` x ) e. CC ) | 
						
							| 30 | 29 | adantl |  |-  ( ( T. /\ x e. RR ) -> ( cos ` x ) e. CC ) | 
						
							| 31 | 30 | negcld |  |-  ( ( T. /\ x e. RR ) -> -u ( cos ` x ) e. CC ) | 
						
							| 32 | 28 | sincld |  |-  ( x e. RR -> ( sin ` x ) e. CC ) | 
						
							| 33 | 32 | adantl |  |-  ( ( T. /\ x e. RR ) -> ( sin ` x ) e. CC ) | 
						
							| 34 | 32 | negcld |  |-  ( x e. RR -> -u ( sin ` x ) e. CC ) | 
						
							| 35 | 34 | adantl |  |-  ( ( T. /\ x e. RR ) -> -u ( sin ` x ) e. CC ) | 
						
							| 36 |  | dvcosre |  |-  ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) | 
						
							| 37 | 36 | a1i |  |-  ( T. -> ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) ) | 
						
							| 38 | 27 30 35 37 | dvmptneg |  |-  ( T. -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> -u -u ( sin ` x ) ) ) | 
						
							| 39 | 32 | negnegd |  |-  ( x e. RR -> -u -u ( sin ` x ) = ( sin ` x ) ) | 
						
							| 40 | 39 | mpteq2ia |  |-  ( x e. RR |-> -u -u ( sin ` x ) ) = ( x e. RR |-> ( sin ` x ) ) | 
						
							| 41 | 38 40 | eqtrdi |  |-  ( T. -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> ( sin ` x ) ) ) | 
						
							| 42 |  | ioossre |  |-  ( 0 (,) _pi ) C_ RR | 
						
							| 43 | 42 | a1i |  |-  ( T. -> ( 0 (,) _pi ) C_ RR ) | 
						
							| 44 |  | iooretop |  |-  ( 0 (,) _pi ) e. ( topGen ` ran (,) ) | 
						
							| 45 | 44 | a1i |  |-  ( T. -> ( 0 (,) _pi ) e. ( topGen ` ran (,) ) ) | 
						
							| 46 | 27 31 33 41 43 19 20 45 | dvmptres |  |-  ( T. -> ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ) | 
						
							| 47 | 46 | mptru |  |-  ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) | 
						
							| 48 | 6 25 47 | 3eqtri |  |-  ( RR _D C ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) | 
						
							| 49 | 48 | fveq1i |  |-  ( ( RR _D C ) ` x ) = ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) | 
						
							| 50 | 42 7 | sstri |  |-  ( 0 (,) _pi ) C_ CC | 
						
							| 51 | 50 | sseli |  |-  ( x e. ( 0 (,) _pi ) -> x e. CC ) | 
						
							| 52 | 51 | sincld |  |-  ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) | 
						
							| 53 |  | eqid |  |-  ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) | 
						
							| 54 | 53 | fvmpt2 |  |-  ( ( x e. ( 0 (,) _pi ) /\ ( sin ` x ) e. CC ) -> ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) = ( sin ` x ) ) | 
						
							| 55 | 52 54 | mpdan |  |-  ( x e. ( 0 (,) _pi ) -> ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) = ( sin ` x ) ) | 
						
							| 56 | 49 55 | eqtrid |  |-  ( x e. ( 0 (,) _pi ) -> ( ( RR _D C ) ` x ) = ( sin ` x ) ) | 
						
							| 57 | 56 | adantl |  |-  ( ( T. /\ x e. ( 0 (,) _pi ) ) -> ( ( RR _D C ) ` x ) = ( sin ` x ) ) | 
						
							| 58 | 57 | itgeq2dv |  |-  ( T. -> S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) | 
						
							| 59 | 58 | mptru |  |-  S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x | 
						
							| 60 | 9 | a1i |  |-  ( T. -> 0 e. RR ) | 
						
							| 61 | 10 | a1i |  |-  ( T. -> _pi e. RR ) | 
						
							| 62 |  | pipos |  |-  0 < _pi | 
						
							| 63 | 9 10 62 | ltleii |  |-  0 <_ _pi | 
						
							| 64 | 63 | a1i |  |-  ( T. -> 0 <_ _pi ) | 
						
							| 65 |  | nfcv |  |-  F/_ x sin | 
						
							| 66 |  | sincn |  |-  sin e. ( CC -cn-> CC ) | 
						
							| 67 | 66 | a1i |  |-  ( T. -> sin e. ( CC -cn-> CC ) ) | 
						
							| 68 | 50 | a1i |  |-  ( T. -> ( 0 (,) _pi ) C_ CC ) | 
						
							| 69 | 65 67 68 | cncfmptss |  |-  ( T. -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) | 
						
							| 70 | 48 69 | eqeltrid |  |-  ( T. -> ( RR _D C ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) | 
						
							| 71 |  | ioossicc |  |-  ( 0 (,) _pi ) C_ ( 0 [,] _pi ) | 
						
							| 72 | 71 | a1i |  |-  ( T. -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) | 
						
							| 73 |  | ioombl |  |-  ( 0 (,) _pi ) e. dom vol | 
						
							| 74 | 73 | a1i |  |-  ( T. -> ( 0 (,) _pi ) e. dom vol ) | 
						
							| 75 | 15 | sincld |  |-  ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) | 
						
							| 76 | 75 | adantl |  |-  ( ( T. /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) | 
						
							| 77 | 14 | a1i |  |-  ( T. -> ( 0 [,] _pi ) C_ CC ) | 
						
							| 78 | 65 67 77 | cncfmptss |  |-  ( T. -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) | 
						
							| 79 | 78 | mptru |  |-  ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) | 
						
							| 80 |  | cniccibl |  |-  ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 ) | 
						
							| 81 | 9 10 79 80 | mp3an |  |-  ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 | 
						
							| 82 | 81 | a1i |  |-  ( T. -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 ) | 
						
							| 83 | 72 74 76 82 | iblss |  |-  ( T. -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. L^1 ) | 
						
							| 84 | 48 83 | eqeltrid |  |-  ( T. -> ( RR _D C ) e. L^1 ) | 
						
							| 85 | 16 | negcld |  |-  ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) e. CC ) | 
						
							| 86 |  | eqid |  |-  ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) | 
						
							| 87 | 86 | fvmpt2 |  |-  ( ( x e. CC /\ -u ( cos ` x ) e. CC ) -> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) = -u ( cos ` x ) ) | 
						
							| 88 | 15 85 87 | syl2anc |  |-  ( x e. ( 0 [,] _pi ) -> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) = -u ( cos ` x ) ) | 
						
							| 89 | 88 | eqcomd |  |-  ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) = ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) | 
						
							| 90 | 89 | mpteq2ia |  |-  ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) | 
						
							| 91 |  | nfmpt1 |  |-  F/_ x ( x e. CC |-> -u ( cos ` x ) ) | 
						
							| 92 |  | coscn |  |-  cos e. ( CC -cn-> CC ) | 
						
							| 93 | 86 | negfcncf |  |-  ( cos e. ( CC -cn-> CC ) -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) | 
						
							| 94 | 92 93 | ax-mp |  |-  ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) | 
						
							| 95 | 94 | a1i |  |-  ( T. -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) | 
						
							| 96 | 91 95 77 | cncfmptss |  |-  ( T. -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) | 
						
							| 97 | 96 | mptru |  |-  ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) | 
						
							| 98 | 90 97 | eqeltri |  |-  ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) | 
						
							| 99 | 5 98 | eqeltri |  |-  C e. ( ( 0 [,] _pi ) -cn-> CC ) | 
						
							| 100 | 99 | a1i |  |-  ( T. -> C e. ( ( 0 [,] _pi ) -cn-> CC ) ) | 
						
							| 101 | 60 61 64 70 84 100 | ftc2 |  |-  ( T. -> S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) ) | 
						
							| 102 | 101 | mptru |  |-  S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) | 
						
							| 103 | 59 102 | eqtr3i |  |-  S. ( 0 (,) _pi ) ( sin ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) | 
						
							| 104 |  | 0xr |  |-  0 e. RR* | 
						
							| 105 | 10 | rexri |  |-  _pi e. RR* | 
						
							| 106 |  | ubicc2 |  |-  ( ( 0 e. RR* /\ _pi e. RR* /\ 0 <_ _pi ) -> _pi e. ( 0 [,] _pi ) ) | 
						
							| 107 | 104 105 63 106 | mp3an |  |-  _pi e. ( 0 [,] _pi ) | 
						
							| 108 |  | fveq2 |  |-  ( t = _pi -> ( cos ` t ) = ( cos ` _pi ) ) | 
						
							| 109 |  | cospi |  |-  ( cos ` _pi ) = -u 1 | 
						
							| 110 | 108 109 | eqtrdi |  |-  ( t = _pi -> ( cos ` t ) = -u 1 ) | 
						
							| 111 | 110 | negeqd |  |-  ( t = _pi -> -u ( cos ` t ) = -u -u 1 ) | 
						
							| 112 |  | ax-1cn |  |-  1 e. CC | 
						
							| 113 | 112 | a1i |  |-  ( t = _pi -> 1 e. CC ) | 
						
							| 114 | 113 | negnegd |  |-  ( t = _pi -> -u -u 1 = 1 ) | 
						
							| 115 | 111 114 | eqtrd |  |-  ( t = _pi -> -u ( cos ` t ) = 1 ) | 
						
							| 116 |  | 1ex |  |-  1 e. _V | 
						
							| 117 | 115 1 116 | fvmpt |  |-  ( _pi e. ( 0 [,] _pi ) -> ( C ` _pi ) = 1 ) | 
						
							| 118 | 107 117 | ax-mp |  |-  ( C ` _pi ) = 1 | 
						
							| 119 |  | lbicc2 |  |-  ( ( 0 e. RR* /\ _pi e. RR* /\ 0 <_ _pi ) -> 0 e. ( 0 [,] _pi ) ) | 
						
							| 120 | 104 105 63 119 | mp3an |  |-  0 e. ( 0 [,] _pi ) | 
						
							| 121 |  | fveq2 |  |-  ( t = 0 -> ( cos ` t ) = ( cos ` 0 ) ) | 
						
							| 122 | 121 | negeqd |  |-  ( t = 0 -> -u ( cos ` t ) = -u ( cos ` 0 ) ) | 
						
							| 123 |  | negex |  |-  -u ( cos ` 0 ) e. _V | 
						
							| 124 | 122 1 123 | fvmpt |  |-  ( 0 e. ( 0 [,] _pi ) -> ( C ` 0 ) = -u ( cos ` 0 ) ) | 
						
							| 125 | 120 124 | ax-mp |  |-  ( C ` 0 ) = -u ( cos ` 0 ) | 
						
							| 126 |  | cos0 |  |-  ( cos ` 0 ) = 1 | 
						
							| 127 | 126 | negeqi |  |-  -u ( cos ` 0 ) = -u 1 | 
						
							| 128 | 125 127 | eqtri |  |-  ( C ` 0 ) = -u 1 | 
						
							| 129 | 118 128 | oveq12i |  |-  ( ( C ` _pi ) - ( C ` 0 ) ) = ( 1 - -u 1 ) | 
						
							| 130 | 112 112 | subnegi |  |-  ( 1 - -u 1 ) = ( 1 + 1 ) | 
						
							| 131 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 132 | 130 131 | eqtri |  |-  ( 1 - -u 1 ) = 2 | 
						
							| 133 | 103 129 132 | 3eqtri |  |-  S. ( 0 (,) _pi ) ( sin ` x ) _d x = 2 |