| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsin0pilem1.1 |
|- C = ( t e. ( 0 [,] _pi ) |-> -u ( cos ` t ) ) |
| 2 |
|
fveq2 |
|- ( t = x -> ( cos ` t ) = ( cos ` x ) ) |
| 3 |
2
|
negeqd |
|- ( t = x -> -u ( cos ` t ) = -u ( cos ` x ) ) |
| 4 |
3
|
cbvmptv |
|- ( t e. ( 0 [,] _pi ) |-> -u ( cos ` t ) ) = ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) |
| 5 |
1 4
|
eqtri |
|- C = ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) |
| 6 |
5
|
oveq2i |
|- ( RR _D C ) = ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) |
| 7 |
|
ax-resscn |
|- RR C_ CC |
| 8 |
7
|
a1i |
|- ( T. -> RR C_ CC ) |
| 9 |
|
0re |
|- 0 e. RR |
| 10 |
|
pire |
|- _pi e. RR |
| 11 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
| 12 |
9 10 11
|
mp2an |
|- ( 0 [,] _pi ) C_ RR |
| 13 |
12
|
a1i |
|- ( T. -> ( 0 [,] _pi ) C_ RR ) |
| 14 |
12 7
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
| 15 |
14
|
sseli |
|- ( x e. ( 0 [,] _pi ) -> x e. CC ) |
| 16 |
15
|
coscld |
|- ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. CC ) |
| 17 |
16
|
adantl |
|- ( ( T. /\ x e. ( 0 [,] _pi ) ) -> ( cos ` x ) e. CC ) |
| 18 |
17
|
negcld |
|- ( ( T. /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) e. CC ) |
| 19 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 20 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 21 |
|
iccntr |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
| 22 |
9 10 21
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) |
| 23 |
22
|
a1i |
|- ( T. -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
| 24 |
8 13 18 19 20 23
|
dvmptntr |
|- ( T. -> ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) ) |
| 25 |
24
|
mptru |
|- ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) |
| 26 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 27 |
26
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
| 28 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 29 |
28
|
coscld |
|- ( x e. RR -> ( cos ` x ) e. CC ) |
| 30 |
29
|
adantl |
|- ( ( T. /\ x e. RR ) -> ( cos ` x ) e. CC ) |
| 31 |
30
|
negcld |
|- ( ( T. /\ x e. RR ) -> -u ( cos ` x ) e. CC ) |
| 32 |
28
|
sincld |
|- ( x e. RR -> ( sin ` x ) e. CC ) |
| 33 |
32
|
adantl |
|- ( ( T. /\ x e. RR ) -> ( sin ` x ) e. CC ) |
| 34 |
32
|
negcld |
|- ( x e. RR -> -u ( sin ` x ) e. CC ) |
| 35 |
34
|
adantl |
|- ( ( T. /\ x e. RR ) -> -u ( sin ` x ) e. CC ) |
| 36 |
|
dvcosre |
|- ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) |
| 37 |
36
|
a1i |
|- ( T. -> ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) ) |
| 38 |
27 30 35 37
|
dvmptneg |
|- ( T. -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> -u -u ( sin ` x ) ) ) |
| 39 |
32
|
negnegd |
|- ( x e. RR -> -u -u ( sin ` x ) = ( sin ` x ) ) |
| 40 |
39
|
mpteq2ia |
|- ( x e. RR |-> -u -u ( sin ` x ) ) = ( x e. RR |-> ( sin ` x ) ) |
| 41 |
38 40
|
eqtrdi |
|- ( T. -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> ( sin ` x ) ) ) |
| 42 |
|
ioossre |
|- ( 0 (,) _pi ) C_ RR |
| 43 |
42
|
a1i |
|- ( T. -> ( 0 (,) _pi ) C_ RR ) |
| 44 |
|
iooretop |
|- ( 0 (,) _pi ) e. ( topGen ` ran (,) ) |
| 45 |
44
|
a1i |
|- ( T. -> ( 0 (,) _pi ) e. ( topGen ` ran (,) ) ) |
| 46 |
27 31 33 41 43 19 20 45
|
dvmptres |
|- ( T. -> ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ) |
| 47 |
46
|
mptru |
|- ( RR _D ( x e. ( 0 (,) _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) |
| 48 |
6 25 47
|
3eqtri |
|- ( RR _D C ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) |
| 49 |
48
|
fveq1i |
|- ( ( RR _D C ) ` x ) = ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) |
| 50 |
42 7
|
sstri |
|- ( 0 (,) _pi ) C_ CC |
| 51 |
50
|
sseli |
|- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
| 52 |
51
|
sincld |
|- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
| 53 |
|
eqid |
|- ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) |
| 54 |
53
|
fvmpt2 |
|- ( ( x e. ( 0 (,) _pi ) /\ ( sin ` x ) e. CC ) -> ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) = ( sin ` x ) ) |
| 55 |
52 54
|
mpdan |
|- ( x e. ( 0 (,) _pi ) -> ( ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ` x ) = ( sin ` x ) ) |
| 56 |
49 55
|
eqtrid |
|- ( x e. ( 0 (,) _pi ) -> ( ( RR _D C ) ` x ) = ( sin ` x ) ) |
| 57 |
56
|
adantl |
|- ( ( T. /\ x e. ( 0 (,) _pi ) ) -> ( ( RR _D C ) ` x ) = ( sin ` x ) ) |
| 58 |
57
|
itgeq2dv |
|- ( T. -> S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) |
| 59 |
58
|
mptru |
|- S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x |
| 60 |
9
|
a1i |
|- ( T. -> 0 e. RR ) |
| 61 |
10
|
a1i |
|- ( T. -> _pi e. RR ) |
| 62 |
|
pipos |
|- 0 < _pi |
| 63 |
9 10 62
|
ltleii |
|- 0 <_ _pi |
| 64 |
63
|
a1i |
|- ( T. -> 0 <_ _pi ) |
| 65 |
|
nfcv |
|- F/_ x sin |
| 66 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 67 |
66
|
a1i |
|- ( T. -> sin e. ( CC -cn-> CC ) ) |
| 68 |
50
|
a1i |
|- ( T. -> ( 0 (,) _pi ) C_ CC ) |
| 69 |
65 67 68
|
cncfmptss |
|- ( T. -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 70 |
48 69
|
eqeltrid |
|- ( T. -> ( RR _D C ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 71 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
| 72 |
71
|
a1i |
|- ( T. -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
| 73 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
| 74 |
73
|
a1i |
|- ( T. -> ( 0 (,) _pi ) e. dom vol ) |
| 75 |
15
|
sincld |
|- ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) |
| 76 |
75
|
adantl |
|- ( ( T. /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) |
| 77 |
14
|
a1i |
|- ( T. -> ( 0 [,] _pi ) C_ CC ) |
| 78 |
65 67 77
|
cncfmptss |
|- ( T. -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 79 |
78
|
mptru |
|- ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) |
| 80 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 ) |
| 81 |
9 10 79 80
|
mp3an |
|- ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 |
| 82 |
81
|
a1i |
|- ( T. -> ( x e. ( 0 [,] _pi ) |-> ( sin ` x ) ) e. L^1 ) |
| 83 |
72 74 76 82
|
iblss |
|- ( T. -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. L^1 ) |
| 84 |
48 83
|
eqeltrid |
|- ( T. -> ( RR _D C ) e. L^1 ) |
| 85 |
16
|
negcld |
|- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) e. CC ) |
| 86 |
|
eqid |
|- ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) |
| 87 |
86
|
fvmpt2 |
|- ( ( x e. CC /\ -u ( cos ` x ) e. CC ) -> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) = -u ( cos ` x ) ) |
| 88 |
15 85 87
|
syl2anc |
|- ( x e. ( 0 [,] _pi ) -> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) = -u ( cos ` x ) ) |
| 89 |
88
|
eqcomd |
|- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) = ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) |
| 90 |
89
|
mpteq2ia |
|- ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) |
| 91 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> -u ( cos ` x ) ) |
| 92 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
| 93 |
86
|
negfcncf |
|- ( cos e. ( CC -cn-> CC ) -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 94 |
92 93
|
ax-mp |
|- ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) |
| 95 |
94
|
a1i |
|- ( T. -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 96 |
91 95 77
|
cncfmptss |
|- ( T. -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 97 |
96
|
mptru |
|- ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> -u ( cos ` x ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) |
| 98 |
90 97
|
eqeltri |
|- ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) |
| 99 |
5 98
|
eqeltri |
|- C e. ( ( 0 [,] _pi ) -cn-> CC ) |
| 100 |
99
|
a1i |
|- ( T. -> C e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 101 |
60 61 64 70 84 100
|
ftc2 |
|- ( T. -> S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) ) |
| 102 |
101
|
mptru |
|- S. ( 0 (,) _pi ) ( ( RR _D C ) ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) |
| 103 |
59 102
|
eqtr3i |
|- S. ( 0 (,) _pi ) ( sin ` x ) _d x = ( ( C ` _pi ) - ( C ` 0 ) ) |
| 104 |
|
0xr |
|- 0 e. RR* |
| 105 |
10
|
rexri |
|- _pi e. RR* |
| 106 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ 0 <_ _pi ) -> _pi e. ( 0 [,] _pi ) ) |
| 107 |
104 105 63 106
|
mp3an |
|- _pi e. ( 0 [,] _pi ) |
| 108 |
|
fveq2 |
|- ( t = _pi -> ( cos ` t ) = ( cos ` _pi ) ) |
| 109 |
|
cospi |
|- ( cos ` _pi ) = -u 1 |
| 110 |
108 109
|
eqtrdi |
|- ( t = _pi -> ( cos ` t ) = -u 1 ) |
| 111 |
110
|
negeqd |
|- ( t = _pi -> -u ( cos ` t ) = -u -u 1 ) |
| 112 |
|
ax-1cn |
|- 1 e. CC |
| 113 |
112
|
a1i |
|- ( t = _pi -> 1 e. CC ) |
| 114 |
113
|
negnegd |
|- ( t = _pi -> -u -u 1 = 1 ) |
| 115 |
111 114
|
eqtrd |
|- ( t = _pi -> -u ( cos ` t ) = 1 ) |
| 116 |
|
1ex |
|- 1 e. _V |
| 117 |
115 1 116
|
fvmpt |
|- ( _pi e. ( 0 [,] _pi ) -> ( C ` _pi ) = 1 ) |
| 118 |
107 117
|
ax-mp |
|- ( C ` _pi ) = 1 |
| 119 |
|
lbicc2 |
|- ( ( 0 e. RR* /\ _pi e. RR* /\ 0 <_ _pi ) -> 0 e. ( 0 [,] _pi ) ) |
| 120 |
104 105 63 119
|
mp3an |
|- 0 e. ( 0 [,] _pi ) |
| 121 |
|
fveq2 |
|- ( t = 0 -> ( cos ` t ) = ( cos ` 0 ) ) |
| 122 |
121
|
negeqd |
|- ( t = 0 -> -u ( cos ` t ) = -u ( cos ` 0 ) ) |
| 123 |
|
negex |
|- -u ( cos ` 0 ) e. _V |
| 124 |
122 1 123
|
fvmpt |
|- ( 0 e. ( 0 [,] _pi ) -> ( C ` 0 ) = -u ( cos ` 0 ) ) |
| 125 |
120 124
|
ax-mp |
|- ( C ` 0 ) = -u ( cos ` 0 ) |
| 126 |
|
cos0 |
|- ( cos ` 0 ) = 1 |
| 127 |
126
|
negeqi |
|- -u ( cos ` 0 ) = -u 1 |
| 128 |
125 127
|
eqtri |
|- ( C ` 0 ) = -u 1 |
| 129 |
118 128
|
oveq12i |
|- ( ( C ` _pi ) - ( C ` 0 ) ) = ( 1 - -u 1 ) |
| 130 |
112 112
|
subnegi |
|- ( 1 - -u 1 ) = ( 1 + 1 ) |
| 131 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 132 |
130 131
|
eqtri |
|- ( 1 - -u 1 ) = 2 |
| 133 |
103 129 132
|
3eqtri |
|- S. ( 0 (,) _pi ) ( sin ` x ) _d x = 2 |