| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kerunit.1 |  |-  U = ( Unit ` R ) | 
						
							| 2 |  | kerunit.2 |  |-  .0. = ( 0g ` S ) | 
						
							| 3 |  | kerunit.3 |  |-  .1. = ( 1r ` S ) | 
						
							| 4 |  | elin |  |-  ( x e. ( U i^i ( `' F " { .0. } ) ) <-> ( x e. U /\ x e. ( `' F " { .0. } ) ) ) | 
						
							| 5 | 4 | biimpi |  |-  ( x e. ( U i^i ( `' F " { .0. } ) ) -> ( x e. U /\ x e. ( `' F " { .0. } ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( x e. U /\ x e. ( `' F " { .0. } ) ) ) | 
						
							| 7 | 6 | simpld |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> x e. U ) | 
						
							| 8 |  | rhmrcl1 |  |-  ( F e. ( R RingHom S ) -> R e. Ring ) | 
						
							| 9 |  | eqid |  |-  ( invr ` R ) = ( invr ` R ) | 
						
							| 10 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 12 | 1 9 10 11 | unitlinv |  |-  ( ( R e. Ring /\ x e. U ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( R e. Ring /\ x e. U ) -> ( F ` ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ) = ( F ` ( 1r ` R ) ) ) | 
						
							| 14 | 8 13 | sylan |  |-  ( ( F e. ( R RingHom S ) /\ x e. U ) -> ( F ` ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ) = ( F ` ( 1r ` R ) ) ) | 
						
							| 15 | 7 14 | syldan |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( F ` ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ) = ( F ` ( 1r ` R ) ) ) | 
						
							| 16 |  | simpl |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> F e. ( R RingHom S ) ) | 
						
							| 17 | 8 | adantr |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> R e. Ring ) | 
						
							| 18 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 19 | 1 9 18 | ringinvcl |  |-  ( ( R e. Ring /\ x e. U ) -> ( ( invr ` R ) ` x ) e. ( Base ` R ) ) | 
						
							| 20 | 17 7 19 | syl2anc |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( ( invr ` R ) ` x ) e. ( Base ` R ) ) | 
						
							| 21 | 18 1 | unitcl |  |-  ( x e. U -> x e. ( Base ` R ) ) | 
						
							| 22 | 7 21 | syl |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> x e. ( Base ` R ) ) | 
						
							| 23 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 24 | 18 10 23 | rhmmul |  |-  ( ( F e. ( R RingHom S ) /\ ( ( invr ` R ) ` x ) e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( F ` ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ) = ( ( F ` ( ( invr ` R ) ` x ) ) ( .r ` S ) ( F ` x ) ) ) | 
						
							| 25 | 16 20 22 24 | syl3anc |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( F ` ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ) = ( ( F ` ( ( invr ` R ) ` x ) ) ( .r ` S ) ( F ` x ) ) ) | 
						
							| 26 | 6 | simprd |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> x e. ( `' F " { .0. } ) ) | 
						
							| 27 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 28 | 18 27 | rhmf |  |-  ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 29 |  | ffn |  |-  ( F : ( Base ` R ) --> ( Base ` S ) -> F Fn ( Base ` R ) ) | 
						
							| 30 |  | elpreima |  |-  ( F Fn ( Base ` R ) -> ( x e. ( `' F " { .0. } ) <-> ( x e. ( Base ` R ) /\ ( F ` x ) e. { .0. } ) ) ) | 
						
							| 31 | 28 29 30 | 3syl |  |-  ( F e. ( R RingHom S ) -> ( x e. ( `' F " { .0. } ) <-> ( x e. ( Base ` R ) /\ ( F ` x ) e. { .0. } ) ) ) | 
						
							| 32 | 31 | simplbda |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( `' F " { .0. } ) ) -> ( F ` x ) e. { .0. } ) | 
						
							| 33 | 26 32 | syldan |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( F ` x ) e. { .0. } ) | 
						
							| 34 |  | fvex |  |-  ( F ` x ) e. _V | 
						
							| 35 | 34 | elsn |  |-  ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) | 
						
							| 36 | 33 35 | sylib |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( F ` x ) = .0. ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( ( F ` ( ( invr ` R ) ` x ) ) ( .r ` S ) ( F ` x ) ) = ( ( F ` ( ( invr ` R ) ` x ) ) ( .r ` S ) .0. ) ) | 
						
							| 38 |  | rhmrcl2 |  |-  ( F e. ( R RingHom S ) -> S e. Ring ) | 
						
							| 39 | 38 | adantr |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> S e. Ring ) | 
						
							| 40 | 28 | adantr |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> F : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 41 | 40 20 | ffvelcdmd |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( F ` ( ( invr ` R ) ` x ) ) e. ( Base ` S ) ) | 
						
							| 42 | 27 23 2 | ringrz |  |-  ( ( S e. Ring /\ ( F ` ( ( invr ` R ) ` x ) ) e. ( Base ` S ) ) -> ( ( F ` ( ( invr ` R ) ` x ) ) ( .r ` S ) .0. ) = .0. ) | 
						
							| 43 | 39 41 42 | syl2anc |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( ( F ` ( ( invr ` R ) ` x ) ) ( .r ` S ) .0. ) = .0. ) | 
						
							| 44 | 25 37 43 | 3eqtrd |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( F ` ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ) = .0. ) | 
						
							| 45 | 11 3 | rhm1 |  |-  ( F e. ( R RingHom S ) -> ( F ` ( 1r ` R ) ) = .1. ) | 
						
							| 46 | 45 | adantr |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> ( F ` ( 1r ` R ) ) = .1. ) | 
						
							| 47 | 15 44 46 | 3eqtr3rd |  |-  ( ( F e. ( R RingHom S ) /\ x e. ( U i^i ( `' F " { .0. } ) ) ) -> .1. = .0. ) | 
						
							| 48 | 47 | reximdva0 |  |-  ( ( F e. ( R RingHom S ) /\ ( U i^i ( `' F " { .0. } ) ) =/= (/) ) -> E. x e. ( U i^i ( `' F " { .0. } ) ) .1. = .0. ) | 
						
							| 49 |  | id |  |-  ( .1. = .0. -> .1. = .0. ) | 
						
							| 50 | 49 | rexlimivw |  |-  ( E. x e. ( U i^i ( `' F " { .0. } ) ) .1. = .0. -> .1. = .0. ) | 
						
							| 51 | 48 50 | syl |  |-  ( ( F e. ( R RingHom S ) /\ ( U i^i ( `' F " { .0. } ) ) =/= (/) ) -> .1. = .0. ) |