| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kerunit.1 |
|
| 2 |
|
kerunit.2 |
|
| 3 |
|
kerunit.3 |
|
| 4 |
|
elin |
|
| 5 |
4
|
biimpi |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
simpld |
|
| 8 |
|
rhmrcl1 |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
1 9 10 11
|
unitlinv |
|
| 13 |
12
|
fveq2d |
|
| 14 |
8 13
|
sylan |
|
| 15 |
7 14
|
syldan |
|
| 16 |
|
simpl |
|
| 17 |
8
|
adantr |
|
| 18 |
|
eqid |
|
| 19 |
1 9 18
|
ringinvcl |
|
| 20 |
17 7 19
|
syl2anc |
|
| 21 |
18 1
|
unitcl |
|
| 22 |
7 21
|
syl |
|
| 23 |
|
eqid |
|
| 24 |
18 10 23
|
rhmmul |
|
| 25 |
16 20 22 24
|
syl3anc |
|
| 26 |
6
|
simprd |
|
| 27 |
|
eqid |
|
| 28 |
18 27
|
rhmf |
|
| 29 |
|
ffn |
|
| 30 |
|
elpreima |
|
| 31 |
28 29 30
|
3syl |
|
| 32 |
31
|
simplbda |
|
| 33 |
26 32
|
syldan |
|
| 34 |
|
fvex |
|
| 35 |
34
|
elsn |
|
| 36 |
33 35
|
sylib |
|
| 37 |
36
|
oveq2d |
|
| 38 |
|
rhmrcl2 |
|
| 39 |
38
|
adantr |
|
| 40 |
28
|
adantr |
|
| 41 |
40 20
|
ffvelcdmd |
|
| 42 |
27 23 2
|
ringrz |
|
| 43 |
39 41 42
|
syl2anc |
|
| 44 |
25 37 43
|
3eqtrd |
|
| 45 |
11 3
|
rhm1 |
|
| 46 |
45
|
adantr |
|
| 47 |
15 44 46
|
3eqtr3rd |
|
| 48 |
47
|
reximdva0 |
|
| 49 |
|
id |
|
| 50 |
49
|
rexlimivw |
|
| 51 |
48 50
|
syl |
|