Step |
Hyp |
Ref |
Expression |
1 |
|
kerunit.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
kerunit.2 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
3 |
|
kerunit.3 |
⊢ 1 = ( 1r ‘ 𝑆 ) |
4 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
5 |
4
|
biimpi |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
7 |
6
|
simpld |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑥 ∈ 𝑈 ) |
8 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
9 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
12 |
1 9 10 11
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
14 |
8 13
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
15 |
7 14
|
syldan |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
16 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
17 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑅 ∈ Ring ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
19 |
1 9 18
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
20 |
17 7 19
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
21 |
18 1
|
unitcl |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
22 |
7 21
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
23 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
24 |
18 10 23
|
rhmmul |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) |
25 |
16 20 22 24
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) |
26 |
6
|
simprd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
28 |
18 27
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
29 |
|
ffn |
⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
30 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) ) |
31 |
28 29 30
|
3syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) ) |
32 |
31
|
simplbda |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
33 |
26 32
|
syldan |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
34 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
35 |
34
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) |
36 |
33 35
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) 0 ) ) |
38 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
39 |
38
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑆 ∈ Ring ) |
40 |
28
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
41 |
40 20
|
ffvelrnd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑆 ) ) |
42 |
27 23 2
|
ringrz |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) 0 ) = 0 ) |
43 |
39 41 42
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) 0 ) = 0 ) |
44 |
25 37 43
|
3eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = 0 ) |
45 |
11 3
|
rhm1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
46 |
45
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
47 |
15 44 46
|
3eqtr3rd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 1 = 0 ) |
48 |
47
|
reximdva0 |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) 1 = 0 ) |
49 |
|
id |
⊢ ( 1 = 0 → 1 = 0 ) |
50 |
49
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) 1 = 0 → 1 = 0 ) |
51 |
48 50
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ≠ ∅ ) → 1 = 0 ) |