Metamath Proof Explorer


Theorem kerunit

Description: If a unit element lies in the kernel of a ring homomorphism, then 0 = 1 , i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017)

Ref Expression
Hypotheses kerunit.1 𝑈 = ( Unit ‘ 𝑅 )
kerunit.2 0 = ( 0g𝑆 )
kerunit.3 1 = ( 1r𝑆 )
Assertion kerunit ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ≠ ∅ ) → 1 = 0 )

Proof

Step Hyp Ref Expression
1 kerunit.1 𝑈 = ( Unit ‘ 𝑅 )
2 kerunit.2 0 = ( 0g𝑆 )
3 kerunit.3 1 = ( 1r𝑆 )
4 elin ( 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ↔ ( 𝑥𝑈𝑥 ∈ ( 𝐹 “ { 0 } ) ) )
5 4 biimpi ( 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) → ( 𝑥𝑈𝑥 ∈ ( 𝐹 “ { 0 } ) ) )
6 5 adantl ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( 𝑥𝑈𝑥 ∈ ( 𝐹 “ { 0 } ) ) )
7 6 simpld ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → 𝑥𝑈 )
8 rhmrcl1 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring )
9 eqid ( invr𝑅 ) = ( invr𝑅 )
10 eqid ( .r𝑅 ) = ( .r𝑅 )
11 eqid ( 1r𝑅 ) = ( 1r𝑅 )
12 1 9 10 11 unitlinv ( ( 𝑅 ∈ Ring ∧ 𝑥𝑈 ) → ( ( ( invr𝑅 ) ‘ 𝑥 ) ( .r𝑅 ) 𝑥 ) = ( 1r𝑅 ) )
13 12 fveq2d ( ( 𝑅 ∈ Ring ∧ 𝑥𝑈 ) → ( 𝐹 ‘ ( ( ( invr𝑅 ) ‘ 𝑥 ) ( .r𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r𝑅 ) ) )
14 8 13 sylan ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥𝑈 ) → ( 𝐹 ‘ ( ( ( invr𝑅 ) ‘ 𝑥 ) ( .r𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r𝑅 ) ) )
15 7 14 syldan ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr𝑅 ) ‘ 𝑥 ) ( .r𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r𝑅 ) ) )
16 simpl ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
17 8 adantr ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → 𝑅 ∈ Ring )
18 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
19 1 9 18 ringinvcl ( ( 𝑅 ∈ Ring ∧ 𝑥𝑈 ) → ( ( invr𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) )
20 17 7 19 syl2anc ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( ( invr𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) )
21 18 1 unitcl ( 𝑥𝑈𝑥 ∈ ( Base ‘ 𝑅 ) )
22 7 21 syl ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
23 eqid ( .r𝑆 ) = ( .r𝑆 )
24 18 10 23 rhmmul ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( ( invr𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( ( invr𝑅 ) ‘ 𝑥 ) ( .r𝑅 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr𝑅 ) ‘ 𝑥 ) ) ( .r𝑆 ) ( 𝐹𝑥 ) ) )
25 16 20 22 24 syl3anc ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr𝑅 ) ‘ 𝑥 ) ( .r𝑅 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr𝑅 ) ‘ 𝑥 ) ) ( .r𝑆 ) ( 𝐹𝑥 ) ) )
26 6 simprd ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → 𝑥 ∈ ( 𝐹 “ { 0 } ) )
27 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
28 18 27 rhmf ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )
29 ffn ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) → 𝐹 Fn ( Base ‘ 𝑅 ) )
30 elpreima ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑥 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹𝑥 ) ∈ { 0 } ) ) )
31 28 29 30 3syl ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑥 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹𝑥 ) ∈ { 0 } ) ) )
32 31 simplbda ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝐹 “ { 0 } ) ) → ( 𝐹𝑥 ) ∈ { 0 } )
33 26 32 syldan ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( 𝐹𝑥 ) ∈ { 0 } )
34 fvex ( 𝐹𝑥 ) ∈ V
35 34 elsn ( ( 𝐹𝑥 ) ∈ { 0 } ↔ ( 𝐹𝑥 ) = 0 )
36 33 35 sylib ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( 𝐹𝑥 ) = 0 )
37 36 oveq2d ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( ( 𝐹 ‘ ( ( invr𝑅 ) ‘ 𝑥 ) ) ( .r𝑆 ) ( 𝐹𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr𝑅 ) ‘ 𝑥 ) ) ( .r𝑆 ) 0 ) )
38 rhmrcl2 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring )
39 38 adantr ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → 𝑆 ∈ Ring )
40 28 adantr ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )
41 40 20 ffvelrnd ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( invr𝑅 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑆 ) )
42 27 23 2 ringrz ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ ( ( invr𝑅 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ ( ( invr𝑅 ) ‘ 𝑥 ) ) ( .r𝑆 ) 0 ) = 0 )
43 39 41 42 syl2anc ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( ( 𝐹 ‘ ( ( invr𝑅 ) ‘ 𝑥 ) ) ( .r𝑆 ) 0 ) = 0 )
44 25 37 43 3eqtrd ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr𝑅 ) ‘ 𝑥 ) ( .r𝑅 ) 𝑥 ) ) = 0 )
45 11 3 rhm1 ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 1r𝑅 ) ) = 1 )
46 45 adantr ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( 1r𝑅 ) ) = 1 )
47 15 44 46 3eqtr3rd ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ) → 1 = 0 )
48 47 reximdva0 ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) 1 = 0 )
49 id ( 1 = 01 = 0 )
50 49 rexlimivw ( ∃ 𝑥 ∈ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) 1 = 01 = 0 )
51 48 50 syl ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( 𝑈 ∩ ( 𝐹 “ { 0 } ) ) ≠ ∅ ) → 1 = 0 )