| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kerunit.1 | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 2 |  | kerunit.2 | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 3 |  | kerunit.3 | ⊢  1   =  ( 1r ‘ 𝑆 ) | 
						
							| 4 |  | elin | ⊢ ( 𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) )  ↔  ( 𝑥  ∈  𝑈  ∧  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) ) ) | 
						
							| 5 | 4 | biimpi | ⊢ ( 𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) )  →  ( 𝑥  ∈  𝑈  ∧  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( 𝑥  ∈  𝑈  ∧  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 8 |  | rhmrcl1 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring ) | 
						
							| 9 |  | eqid | ⊢ ( invr ‘ 𝑅 )  =  ( invr ‘ 𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 12 | 1 9 10 11 | unitlinv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝑈 )  →  ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝑈 )  →  ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) )  =  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) | 
						
							| 14 | 8 13 | sylan | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  𝑈 )  →  ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) )  =  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) | 
						
							| 15 | 7 14 | syldan | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) )  =  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 17 | 8 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 19 | 1 9 18 | ringinvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝑈 )  →  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 17 7 19 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 21 | 18 1 | unitcl | ⊢ ( 𝑥  ∈  𝑈  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 22 | 7 21 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  𝑥  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 23 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 24 | 18 10 23 | rhmmul | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ( ( invr ‘ 𝑅 ) ‘ 𝑥 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑥  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) )  =  ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 25 | 16 20 22 24 | syl3anc | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) )  =  ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 26 | 6 | simprd | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 28 | 18 27 | rhmf | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 29 |  | ffn | ⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 )  →  𝐹  Fn  ( Base ‘ 𝑅 ) ) | 
						
							| 30 |  | elpreima | ⊢ ( 𝐹  Fn  ( Base ‘ 𝑅 )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  {  0  } )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  {  0  } ) ) ) | 
						
							| 31 | 28 29 30 | 3syl | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  {  0  } )  ↔  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  {  0  } ) ) ) | 
						
							| 32 | 31 | simplbda | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( ◡ 𝐹  “  {  0  } ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  {  0  } ) | 
						
							| 33 | 26 32 | syldan | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  {  0  } ) | 
						
							| 34 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 35 | 34 | elsn | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  {  0  }  ↔  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 36 | 33 35 | sylib | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 )  0  ) ) | 
						
							| 38 |  | rhmrcl2 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑆  ∈  Ring ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  𝑆  ∈  Ring ) | 
						
							| 40 | 28 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 41 | 40 20 | ffvelcdmd | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 42 | 27 23 2 | ringrz | ⊢ ( ( 𝑆  ∈  Ring  ∧  ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) )  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 )  0  )  =   0  ) | 
						
							| 43 | 39 41 42 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 )  0  )  =   0  ) | 
						
							| 44 | 25 37 43 | 3eqtrd | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) )  =   0  ) | 
						
							| 45 | 11 3 | rhm1 | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =   1  ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →  ( 𝐹 ‘ ( 1r ‘ 𝑅 ) )  =   1  ) | 
						
							| 47 | 15 44 46 | 3eqtr3rd | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) ) )  →   1   =   0  ) | 
						
							| 48 | 47 | reximdva0 | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) )  ≠  ∅ )  →  ∃ 𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) )  1   =   0  ) | 
						
							| 49 |  | id | ⊢ (  1   =   0   →   1   =   0  ) | 
						
							| 50 | 49 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) )  1   =   0   →   1   =   0  ) | 
						
							| 51 | 48 50 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ( 𝑈  ∩  ( ◡ 𝐹  “  {  0  } ) )  ≠  ∅ )  →   1   =   0  ) |