| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kerunit.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 2 |
|
kerunit.2 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 3 |
|
kerunit.3 |
⊢ 1 = ( 1r ‘ 𝑆 ) |
| 4 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
| 5 |
4
|
biimpi |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) ) |
| 7 |
6
|
simpld |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑥 ∈ 𝑈 ) |
| 8 |
|
rhmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) |
| 9 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 12 |
1 9 10 11
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 14 |
8 13
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 15 |
7 14
|
syldan |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 16 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 17 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑅 ∈ Ring ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 19 |
1 9 18
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 20 |
17 7 19
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 21 |
18 1
|
unitcl |
⊢ ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 22 |
7 21
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 24 |
18 10 23
|
rhmmul |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 25 |
16 20 22 24
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 |
6
|
simprd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 28 |
18 27
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 29 |
|
ffn |
⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
| 30 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑅 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) ) |
| 31 |
28 29 30
|
3syl |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) ) ) |
| 32 |
31
|
simplbda |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 33 |
26 32
|
syldan |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 34 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 35 |
34
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 36 |
33 35
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 37 |
36
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) 0 ) ) |
| 38 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝑆 ∈ Ring ) |
| 40 |
28
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 41 |
40 20
|
ffvelcdmd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑆 ) ) |
| 42 |
27 23 2
|
ringrz |
⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 43 |
39 41 42
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( ( 𝐹 ‘ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ) ( .r ‘ 𝑆 ) 0 ) = 0 ) |
| 44 |
25 37 43
|
3eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = 0 ) |
| 45 |
11 3
|
rhm1 |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = 1 ) |
| 47 |
15 44 46
|
3eqtr3rd |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ) → 1 = 0 ) |
| 48 |
47
|
reximdva0 |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) 1 = 0 ) |
| 49 |
|
id |
⊢ ( 1 = 0 → 1 = 0 ) |
| 50 |
49
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) 1 = 0 → 1 = 0 ) |
| 51 |
48 50
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( 𝑈 ∩ ( ◡ 𝐹 “ { 0 } ) ) ≠ ∅ ) → 1 = 0 ) |