| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lrrec.1 |  |-  R = { <. x , y >. | x e. ( ( _Left ` y ) u. ( _Right ` y ) ) } | 
						
							| 2 |  | df-fr |  |-  ( R Fr No <-> A. a ( ( a C_ No /\ a =/= (/) ) -> E. p e. a A. q e. a -. q R p ) ) | 
						
							| 3 |  | bdayfun |  |-  Fun bday | 
						
							| 4 |  | imassrn |  |-  ( bday " a ) C_ ran bday | 
						
							| 5 |  | bdayrn |  |-  ran bday = On | 
						
							| 6 | 4 5 | sseqtri |  |-  ( bday " a ) C_ On | 
						
							| 7 |  | fvex |  |-  ( bday ` q ) e. _V | 
						
							| 8 | 7 | jctr |  |-  ( q e. a -> ( q e. a /\ ( bday ` q ) e. _V ) ) | 
						
							| 9 | 8 | eximi |  |-  ( E. q q e. a -> E. q ( q e. a /\ ( bday ` q ) e. _V ) ) | 
						
							| 10 |  | n0 |  |-  ( a =/= (/) <-> E. q q e. a ) | 
						
							| 11 |  | df-rex |  |-  ( E. q e. a ( bday ` q ) e. _V <-> E. q ( q e. a /\ ( bday ` q ) e. _V ) ) | 
						
							| 12 | 9 10 11 | 3imtr4i |  |-  ( a =/= (/) -> E. q e. a ( bday ` q ) e. _V ) | 
						
							| 13 |  | isset |  |-  ( ( bday ` q ) e. _V <-> E. p p = ( bday ` q ) ) | 
						
							| 14 |  | eqcom |  |-  ( p = ( bday ` q ) <-> ( bday ` q ) = p ) | 
						
							| 15 | 14 | exbii |  |-  ( E. p p = ( bday ` q ) <-> E. p ( bday ` q ) = p ) | 
						
							| 16 | 13 15 | bitri |  |-  ( ( bday ` q ) e. _V <-> E. p ( bday ` q ) = p ) | 
						
							| 17 | 16 | rexbii |  |-  ( E. q e. a ( bday ` q ) e. _V <-> E. q e. a E. p ( bday ` q ) = p ) | 
						
							| 18 |  | rexcom4 |  |-  ( E. q e. a E. p ( bday ` q ) = p <-> E. p E. q e. a ( bday ` q ) = p ) | 
						
							| 19 | 17 18 | bitri |  |-  ( E. q e. a ( bday ` q ) e. _V <-> E. p E. q e. a ( bday ` q ) = p ) | 
						
							| 20 | 12 19 | sylib |  |-  ( a =/= (/) -> E. p E. q e. a ( bday ` q ) = p ) | 
						
							| 21 | 20 | adantl |  |-  ( ( a C_ No /\ a =/= (/) ) -> E. p E. q e. a ( bday ` q ) = p ) | 
						
							| 22 |  | bdayfn |  |-  bday Fn No | 
						
							| 23 |  | fvelimab |  |-  ( ( bday Fn No /\ a C_ No ) -> ( p e. ( bday " a ) <-> E. q e. a ( bday ` q ) = p ) ) | 
						
							| 24 | 22 23 | mpan |  |-  ( a C_ No -> ( p e. ( bday " a ) <-> E. q e. a ( bday ` q ) = p ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( a C_ No /\ a =/= (/) ) -> ( p e. ( bday " a ) <-> E. q e. a ( bday ` q ) = p ) ) | 
						
							| 26 | 25 | exbidv |  |-  ( ( a C_ No /\ a =/= (/) ) -> ( E. p p e. ( bday " a ) <-> E. p E. q e. a ( bday ` q ) = p ) ) | 
						
							| 27 | 21 26 | mpbird |  |-  ( ( a C_ No /\ a =/= (/) ) -> E. p p e. ( bday " a ) ) | 
						
							| 28 |  | n0 |  |-  ( ( bday " a ) =/= (/) <-> E. p p e. ( bday " a ) ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( ( a C_ No /\ a =/= (/) ) -> ( bday " a ) =/= (/) ) | 
						
							| 30 |  | onint |  |-  ( ( ( bday " a ) C_ On /\ ( bday " a ) =/= (/) ) -> |^| ( bday " a ) e. ( bday " a ) ) | 
						
							| 31 | 6 29 30 | sylancr |  |-  ( ( a C_ No /\ a =/= (/) ) -> |^| ( bday " a ) e. ( bday " a ) ) | 
						
							| 32 |  | fvelima |  |-  ( ( Fun bday /\ |^| ( bday " a ) e. ( bday " a ) ) -> E. p e. a ( bday ` p ) = |^| ( bday " a ) ) | 
						
							| 33 | 3 31 32 | sylancr |  |-  ( ( a C_ No /\ a =/= (/) ) -> E. p e. a ( bday ` p ) = |^| ( bday " a ) ) | 
						
							| 34 |  | fnfvima |  |-  ( ( bday Fn No /\ a C_ No /\ q e. a ) -> ( bday ` q ) e. ( bday " a ) ) | 
						
							| 35 | 22 34 | mp3an1 |  |-  ( ( a C_ No /\ q e. a ) -> ( bday ` q ) e. ( bday " a ) ) | 
						
							| 36 | 35 | adantlr |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ q e. a ) -> ( bday ` q ) e. ( bday " a ) ) | 
						
							| 37 |  | onnmin |  |-  ( ( ( bday " a ) C_ On /\ ( bday ` q ) e. ( bday " a ) ) -> -. ( bday ` q ) e. |^| ( bday " a ) ) | 
						
							| 38 | 6 36 37 | sylancr |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ q e. a ) -> -. ( bday ` q ) e. |^| ( bday " a ) ) | 
						
							| 39 | 38 | ralrimiva |  |-  ( ( a C_ No /\ a =/= (/) ) -> A. q e. a -. ( bday ` q ) e. |^| ( bday " a ) ) | 
						
							| 40 |  | eleq2 |  |-  ( ( bday ` p ) = |^| ( bday " a ) -> ( ( bday ` q ) e. ( bday ` p ) <-> ( bday ` q ) e. |^| ( bday " a ) ) ) | 
						
							| 41 | 40 | notbid |  |-  ( ( bday ` p ) = |^| ( bday " a ) -> ( -. ( bday ` q ) e. ( bday ` p ) <-> -. ( bday ` q ) e. |^| ( bday " a ) ) ) | 
						
							| 42 | 41 | ralbidv |  |-  ( ( bday ` p ) = |^| ( bday " a ) -> ( A. q e. a -. ( bday ` q ) e. ( bday ` p ) <-> A. q e. a -. ( bday ` q ) e. |^| ( bday " a ) ) ) | 
						
							| 43 | 39 42 | syl5ibrcom |  |-  ( ( a C_ No /\ a =/= (/) ) -> ( ( bday ` p ) = |^| ( bday " a ) -> A. q e. a -. ( bday ` q ) e. ( bday ` p ) ) ) | 
						
							| 44 | 43 | reximdv |  |-  ( ( a C_ No /\ a =/= (/) ) -> ( E. p e. a ( bday ` p ) = |^| ( bday " a ) -> E. p e. a A. q e. a -. ( bday ` q ) e. ( bday ` p ) ) ) | 
						
							| 45 | 33 44 | mpd |  |-  ( ( a C_ No /\ a =/= (/) ) -> E. p e. a A. q e. a -. ( bday ` q ) e. ( bday ` p ) ) | 
						
							| 46 |  | simpll |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ ( p e. a /\ q e. a ) ) -> a C_ No ) | 
						
							| 47 |  | simprr |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ ( p e. a /\ q e. a ) ) -> q e. a ) | 
						
							| 48 | 46 47 | sseldd |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ ( p e. a /\ q e. a ) ) -> q e. No ) | 
						
							| 49 |  | simprl |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ ( p e. a /\ q e. a ) ) -> p e. a ) | 
						
							| 50 | 46 49 | sseldd |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ ( p e. a /\ q e. a ) ) -> p e. No ) | 
						
							| 51 | 1 | lrrecval2 |  |-  ( ( q e. No /\ p e. No ) -> ( q R p <-> ( bday ` q ) e. ( bday ` p ) ) ) | 
						
							| 52 | 48 50 51 | syl2anc |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ ( p e. a /\ q e. a ) ) -> ( q R p <-> ( bday ` q ) e. ( bday ` p ) ) ) | 
						
							| 53 | 52 | notbid |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ ( p e. a /\ q e. a ) ) -> ( -. q R p <-> -. ( bday ` q ) e. ( bday ` p ) ) ) | 
						
							| 54 | 53 | anassrs |  |-  ( ( ( ( a C_ No /\ a =/= (/) ) /\ p e. a ) /\ q e. a ) -> ( -. q R p <-> -. ( bday ` q ) e. ( bday ` p ) ) ) | 
						
							| 55 | 54 | ralbidva |  |-  ( ( ( a C_ No /\ a =/= (/) ) /\ p e. a ) -> ( A. q e. a -. q R p <-> A. q e. a -. ( bday ` q ) e. ( bday ` p ) ) ) | 
						
							| 56 | 55 | rexbidva |  |-  ( ( a C_ No /\ a =/= (/) ) -> ( E. p e. a A. q e. a -. q R p <-> E. p e. a A. q e. a -. ( bday ` q ) e. ( bday ` p ) ) ) | 
						
							| 57 | 45 56 | mpbird |  |-  ( ( a C_ No /\ a =/= (/) ) -> E. p e. a A. q e. a -. q R p ) | 
						
							| 58 | 2 57 | mpgbir |  |-  R Fr No |