| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvoli2.l |
|- .<_ = ( le ` K ) |
| 2 |
|
lvoli2.j |
|- .\/ = ( join ` K ) |
| 3 |
|
lvoli2.a |
|- A = ( Atoms ` K ) |
| 4 |
|
lvoli2.v |
|- V = ( LVols ` K ) |
| 5 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) |
| 6 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) |
| 7 |
|
simp3 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
| 8 |
|
eqidd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) |
| 9 |
|
neeq1 |
|- ( p = P -> ( p =/= q <-> P =/= q ) ) |
| 10 |
|
oveq1 |
|- ( p = P -> ( p .\/ q ) = ( P .\/ q ) ) |
| 11 |
10
|
breq2d |
|- ( p = P -> ( R .<_ ( p .\/ q ) <-> R .<_ ( P .\/ q ) ) ) |
| 12 |
11
|
notbid |
|- ( p = P -> ( -. R .<_ ( p .\/ q ) <-> -. R .<_ ( P .\/ q ) ) ) |
| 13 |
10
|
oveq1d |
|- ( p = P -> ( ( p .\/ q ) .\/ R ) = ( ( P .\/ q ) .\/ R ) ) |
| 14 |
13
|
breq2d |
|- ( p = P -> ( S .<_ ( ( p .\/ q ) .\/ R ) <-> S .<_ ( ( P .\/ q ) .\/ R ) ) ) |
| 15 |
14
|
notbid |
|- ( p = P -> ( -. S .<_ ( ( p .\/ q ) .\/ R ) <-> -. S .<_ ( ( P .\/ q ) .\/ R ) ) ) |
| 16 |
9 12 15
|
3anbi123d |
|- ( p = P -> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) <-> ( P =/= q /\ -. R .<_ ( P .\/ q ) /\ -. S .<_ ( ( P .\/ q ) .\/ R ) ) ) ) |
| 17 |
13
|
oveq1d |
|- ( p = P -> ( ( ( p .\/ q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) ) |
| 18 |
17
|
eqeq2d |
|- ( p = P -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) ) ) |
| 19 |
16 18
|
anbi12d |
|- ( p = P -> ( ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) <-> ( ( P =/= q /\ -. R .<_ ( P .\/ q ) /\ -. S .<_ ( ( P .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) ) ) ) |
| 20 |
|
neeq2 |
|- ( q = Q -> ( P =/= q <-> P =/= Q ) ) |
| 21 |
|
oveq2 |
|- ( q = Q -> ( P .\/ q ) = ( P .\/ Q ) ) |
| 22 |
21
|
breq2d |
|- ( q = Q -> ( R .<_ ( P .\/ q ) <-> R .<_ ( P .\/ Q ) ) ) |
| 23 |
22
|
notbid |
|- ( q = Q -> ( -. R .<_ ( P .\/ q ) <-> -. R .<_ ( P .\/ Q ) ) ) |
| 24 |
21
|
oveq1d |
|- ( q = Q -> ( ( P .\/ q ) .\/ R ) = ( ( P .\/ Q ) .\/ R ) ) |
| 25 |
24
|
breq2d |
|- ( q = Q -> ( S .<_ ( ( P .\/ q ) .\/ R ) <-> S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
| 26 |
25
|
notbid |
|- ( q = Q -> ( -. S .<_ ( ( P .\/ q ) .\/ R ) <-> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
| 27 |
20 23 26
|
3anbi123d |
|- ( q = Q -> ( ( P =/= q /\ -. R .<_ ( P .\/ q ) /\ -. S .<_ ( ( P .\/ q ) .\/ R ) ) <-> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) ) |
| 28 |
24
|
oveq1d |
|- ( q = Q -> ( ( ( P .\/ q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) |
| 29 |
28
|
eqeq2d |
|- ( q = Q -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) ) |
| 30 |
27 29
|
anbi12d |
|- ( q = Q -> ( ( ( P =/= q /\ -. R .<_ ( P .\/ q ) /\ -. S .<_ ( ( P .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ q ) .\/ R ) .\/ S ) ) <-> ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) ) ) |
| 31 |
19 30
|
rspc2ev |
|- ( ( P e. A /\ Q e. A /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( P .\/ Q ) .\/ R ) .\/ S ) ) ) -> E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) |
| 32 |
5 6 7 8 31
|
syl112anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) |
| 33 |
32
|
3exp |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( R e. A /\ S e. A ) -> ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) -> E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) ) ) |
| 34 |
|
simplrl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> R e. A ) |
| 35 |
|
simplrr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> S e. A ) |
| 36 |
|
simpr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) |
| 37 |
|
breq1 |
|- ( r = R -> ( r .<_ ( p .\/ q ) <-> R .<_ ( p .\/ q ) ) ) |
| 38 |
37
|
notbid |
|- ( r = R -> ( -. r .<_ ( p .\/ q ) <-> -. R .<_ ( p .\/ q ) ) ) |
| 39 |
|
oveq2 |
|- ( r = R -> ( ( p .\/ q ) .\/ r ) = ( ( p .\/ q ) .\/ R ) ) |
| 40 |
39
|
breq2d |
|- ( r = R -> ( s .<_ ( ( p .\/ q ) .\/ r ) <-> s .<_ ( ( p .\/ q ) .\/ R ) ) ) |
| 41 |
40
|
notbid |
|- ( r = R -> ( -. s .<_ ( ( p .\/ q ) .\/ r ) <-> -. s .<_ ( ( p .\/ q ) .\/ R ) ) ) |
| 42 |
38 41
|
3anbi23d |
|- ( r = R -> ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) <-> ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ R ) ) ) ) |
| 43 |
39
|
oveq1d |
|- ( r = R -> ( ( ( p .\/ q ) .\/ r ) .\/ s ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) ) |
| 44 |
43
|
eqeq2d |
|- ( r = R -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) ) ) |
| 45 |
42 44
|
anbi12d |
|- ( r = R -> ( ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) <-> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) ) ) ) |
| 46 |
|
breq1 |
|- ( s = S -> ( s .<_ ( ( p .\/ q ) .\/ R ) <-> S .<_ ( ( p .\/ q ) .\/ R ) ) ) |
| 47 |
46
|
notbid |
|- ( s = S -> ( -. s .<_ ( ( p .\/ q ) .\/ R ) <-> -. S .<_ ( ( p .\/ q ) .\/ R ) ) ) |
| 48 |
47
|
3anbi3d |
|- ( s = S -> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ R ) ) <-> ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) ) ) |
| 49 |
|
oveq2 |
|- ( s = S -> ( ( ( p .\/ q ) .\/ R ) .\/ s ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) |
| 50 |
49
|
eqeq2d |
|- ( s = S -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) |
| 51 |
48 50
|
anbi12d |
|- ( s = S -> ( ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ s ) ) <-> ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) ) |
| 52 |
45 51
|
rspc2ev |
|- ( ( R e. A /\ S e. A /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) |
| 53 |
34 35 36 52
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) ) -> E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) |
| 54 |
53
|
ex |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) -> E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) |
| 55 |
54
|
reximdv |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) -> E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) |
| 56 |
55
|
reximdv |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) -> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) |
| 57 |
56
|
ex |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( R e. A /\ S e. A ) -> ( E. p e. A E. q e. A ( ( p =/= q /\ -. R .<_ ( p .\/ q ) /\ -. S .<_ ( ( p .\/ q ) .\/ R ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ R ) .\/ S ) ) -> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) ) |
| 58 |
33 57
|
syldd |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( ( R e. A /\ S e. A ) -> ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) -> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) ) |
| 59 |
58
|
3imp |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) |
| 60 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) |
| 61 |
60
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) |
| 62 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 63 |
62 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 64 |
63
|
3ad2ant1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 65 |
|
simp2l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) |
| 66 |
62 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 67 |
65 66
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) |
| 68 |
62 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
| 69 |
61 64 67 68
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
| 70 |
|
simp2r |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) |
| 71 |
62 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 72 |
70 71
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) |
| 73 |
62 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( Base ` K ) ) |
| 74 |
61 69 72 73
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( Base ` K ) ) |
| 75 |
62 1 2 3 4
|
islvol5 |
|- ( ( K e. HL /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( Base ` K ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) |
| 76 |
60 74 75
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V <-> E. p e. A E. q e. A E. r e. A E. s e. A ( ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ -. s .<_ ( ( p .\/ q ) .\/ r ) ) /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( ( p .\/ q ) .\/ r ) .\/ s ) ) ) ) |
| 77 |
59 76
|
mpbird |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. V ) |