Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpglem.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdpglem.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdpglem.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdpglem.v |
|- V = ( Base ` U ) |
5 |
|
mapdpglem.s |
|- .- = ( -g ` U ) |
6 |
|
mapdpglem.n |
|- N = ( LSpan ` U ) |
7 |
|
mapdpglem.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
mapdpglem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
mapdpglem.x |
|- ( ph -> X e. V ) |
10 |
|
mapdpglem.y |
|- ( ph -> Y e. V ) |
11 |
|
mapdpglem1.p |
|- .(+) = ( LSSum ` C ) |
12 |
|
mapdpglem2.j |
|- J = ( LSpan ` C ) |
13 |
|
mapdpglem3.f |
|- F = ( Base ` C ) |
14 |
|
mapdpglem3.te |
|- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) |
15 |
|
mapdpglem3.a |
|- A = ( Scalar ` U ) |
16 |
|
mapdpglem3.b |
|- B = ( Base ` A ) |
17 |
|
mapdpglem3.t |
|- .x. = ( .s ` C ) |
18 |
|
mapdpglem3.r |
|- R = ( -g ` C ) |
19 |
|
mapdpglem3.g |
|- ( ph -> G e. F ) |
20 |
|
mapdpglem3.e |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
21 |
|
mapdpglem4.q |
|- Q = ( 0g ` U ) |
22 |
|
mapdpglem.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
23 |
|
mapdpglem4.jt |
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) |
24 |
|
mapdpglem4.z |
|- .0. = ( 0g ` A ) |
25 |
|
mapdpglem4.g4 |
|- ( ph -> g e. B ) |
26 |
|
mapdpglem4.z4 |
|- ( ph -> z e. ( M ` ( N ` { Y } ) ) ) |
27 |
|
mapdpglem4.t4 |
|- ( ph -> t = ( ( g .x. G ) R z ) ) |
28 |
|
mapdpglem4.xn |
|- ( ph -> X =/= Q ) |
29 |
|
mapdpglem12.yn |
|- ( ph -> Y =/= Q ) |
30 |
|
mapdpglem17.ep |
|- E = ( ( ( invr ` A ) ` g ) .x. z ) |
31 |
1 3 8
|
dvhlvec |
|- ( ph -> U e. LVec ) |
32 |
15
|
lvecdrng |
|- ( U e. LVec -> A e. DivRing ) |
33 |
31 32
|
syl |
|- ( ph -> A e. DivRing ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
mapdpglem11 |
|- ( ph -> g =/= .0. ) |
35 |
|
eqid |
|- ( invr ` A ) = ( invr ` A ) |
36 |
16 24 35
|
drnginvrn0 |
|- ( ( A e. DivRing /\ g e. B /\ g =/= .0. ) -> ( ( invr ` A ) ` g ) =/= .0. ) |
37 |
33 25 34 36
|
syl3anc |
|- ( ph -> ( ( invr ` A ) ` g ) =/= .0. ) |
38 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
39 |
|
eqid |
|- ( 0g ` ( Scalar ` C ) ) = ( 0g ` ( Scalar ` C ) ) |
40 |
1 3 15 24 7 38 39 8
|
lcd0 |
|- ( ph -> ( 0g ` ( Scalar ` C ) ) = .0. ) |
41 |
37 40
|
neeqtrrd |
|- ( ph -> ( ( invr ` A ) ` g ) =/= ( 0g ` ( Scalar ` C ) ) ) |
42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
mapdpglem16 |
|- ( ph -> z =/= ( 0g ` C ) ) |
43 |
|
eqid |
|- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
44 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
45 |
1 7 8
|
lcdlvec |
|- ( ph -> C e. LVec ) |
46 |
16 24 35
|
drnginvrcl |
|- ( ( A e. DivRing /\ g e. B /\ g =/= .0. ) -> ( ( invr ` A ) ` g ) e. B ) |
47 |
33 25 34 46
|
syl3anc |
|- ( ph -> ( ( invr ` A ) ` g ) e. B ) |
48 |
1 3 15 16 7 38 43 8
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` C ) ) = B ) |
49 |
47 48
|
eleqtrrd |
|- ( ph -> ( ( invr ` A ) ` g ) e. ( Base ` ( Scalar ` C ) ) ) |
50 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
51 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
52 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
53 |
4 50 6
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
54 |
52 10 53
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
55 |
1 2 3 50 7 51 8 54
|
mapdcl2 |
|- ( ph -> ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) ) |
56 |
13 51
|
lssss |
|- ( ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) -> ( M ` ( N ` { Y } ) ) C_ F ) |
57 |
55 56
|
syl |
|- ( ph -> ( M ` ( N ` { Y } ) ) C_ F ) |
58 |
57 26
|
sseldd |
|- ( ph -> z e. F ) |
59 |
13 17 38 43 39 44 45 49 58
|
lvecvsn0 |
|- ( ph -> ( ( ( ( invr ` A ) ` g ) .x. z ) =/= ( 0g ` C ) <-> ( ( ( invr ` A ) ` g ) =/= ( 0g ` ( Scalar ` C ) ) /\ z =/= ( 0g ` C ) ) ) ) |
60 |
41 42 59
|
mpbir2and |
|- ( ph -> ( ( ( invr ` A ) ` g ) .x. z ) =/= ( 0g ` C ) ) |
61 |
60 30 44
|
3netr4g |
|- ( ph -> E =/= ( 0g ` C ) ) |