| Step |
Hyp |
Ref |
Expression |
| 1 |
|
proot1hash.g |
|- G = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
| 2 |
|
proot1hash.o |
|- O = ( od ` G ) |
| 3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 4 |
3 2
|
odf |
|- O : ( Base ` G ) --> NN0 |
| 5 |
|
ffn |
|- ( O : ( Base ` G ) --> NN0 -> O Fn ( Base ` G ) ) |
| 6 |
|
fniniseg2 |
|- ( O Fn ( Base ` G ) -> ( `' O " { N } ) = { x e. ( Base ` G ) | ( O ` x ) = N } ) |
| 7 |
4 5 6
|
mp2b |
|- ( `' O " { N } ) = { x e. ( Base ` G ) | ( O ` x ) = N } |
| 8 |
|
simp3 |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> X e. ( `' O " { N } ) ) |
| 9 |
|
fniniseg |
|- ( O Fn ( Base ` G ) -> ( X e. ( `' O " { N } ) <-> ( X e. ( Base ` G ) /\ ( O ` X ) = N ) ) ) |
| 10 |
4 5 9
|
mp2b |
|- ( X e. ( `' O " { N } ) <-> ( X e. ( Base ` G ) /\ ( O ` X ) = N ) ) |
| 11 |
8 10
|
sylib |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( X e. ( Base ` G ) /\ ( O ` X ) = N ) ) |
| 12 |
11
|
simprd |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( O ` X ) = N ) |
| 13 |
12
|
eqeq2d |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( ( O ` x ) = ( O ` X ) <-> ( O ` x ) = N ) ) |
| 14 |
13
|
rabbidv |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } = { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = N } ) |
| 15 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
| 16 |
15
|
simprbi |
|- ( R e. IDomn -> R e. Domn ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> R e. Domn ) |
| 18 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 19 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 20 |
19 1
|
unitgrp |
|- ( R e. Ring -> G e. Grp ) |
| 21 |
17 18 20
|
3syl |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> G e. Grp ) |
| 22 |
3
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) |
| 23 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 24 |
21 22 23
|
3syl |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) |
| 25 |
|
eqid |
|- ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) |
| 26 |
25
|
mrcssv |
|- ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) C_ ( Base ` G ) ) |
| 27 |
|
dfrab3ss |
|- ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) C_ ( Base ` G ) -> { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = N } = ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) i^i { x e. ( Base ` G ) | ( O ` x ) = N } ) ) |
| 28 |
24 26 27
|
3syl |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = N } = ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) i^i { x e. ( Base ` G ) | ( O ` x ) = N } ) ) |
| 29 |
|
incom |
|- ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) i^i { x e. ( Base ` G ) | ( O ` x ) = N } ) = ( { x e. ( Base ` G ) | ( O ` x ) = N } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) |
| 30 |
|
simpl1 |
|- ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> R e. IDomn ) |
| 31 |
|
simpl2 |
|- ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> N e. NN ) |
| 32 |
|
simpr |
|- ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> x e. ( `' O " { N } ) ) |
| 33 |
|
simpl3 |
|- ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> X e. ( `' O " { N } ) ) |
| 34 |
1 2 25
|
proot1mul |
|- ( ( ( R e. IDomn /\ N e. NN ) /\ ( x e. ( `' O " { N } ) /\ X e. ( `' O " { N } ) ) ) -> x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) |
| 35 |
30 31 32 33 34
|
syl22anc |
|- ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) |
| 36 |
35
|
ex |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( x e. ( `' O " { N } ) -> x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) ) |
| 37 |
36
|
ssrdv |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( `' O " { N } ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) |
| 38 |
7 37
|
eqsstrrid |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> { x e. ( Base ` G ) | ( O ` x ) = N } C_ ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) |
| 39 |
|
dfss2 |
|- ( { x e. ( Base ` G ) | ( O ` x ) = N } C_ ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) <-> ( { x e. ( Base ` G ) | ( O ` x ) = N } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) = { x e. ( Base ` G ) | ( O ` x ) = N } ) |
| 40 |
38 39
|
sylib |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( { x e. ( Base ` G ) | ( O ` x ) = N } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) = { x e. ( Base ` G ) | ( O ` x ) = N } ) |
| 41 |
29 40
|
eqtrid |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) i^i { x e. ( Base ` G ) | ( O ` x ) = N } ) = { x e. ( Base ` G ) | ( O ` x ) = N } ) |
| 42 |
14 28 41
|
3eqtrrd |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> { x e. ( Base ` G ) | ( O ` x ) = N } = { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) |
| 43 |
7 42
|
eqtrid |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( `' O " { N } ) = { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) |
| 44 |
43
|
fveq2d |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( # ` ( `' O " { N } ) ) = ( # ` { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) ) |
| 45 |
11
|
simpld |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> X e. ( Base ` G ) ) |
| 46 |
|
simp2 |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> N e. NN ) |
| 47 |
12 46
|
eqeltrd |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( O ` X ) e. NN ) |
| 48 |
3 2 25
|
odngen |
|- ( ( G e. Grp /\ X e. ( Base ` G ) /\ ( O ` X ) e. NN ) -> ( # ` { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) = ( phi ` ( O ` X ) ) ) |
| 49 |
21 45 47 48
|
syl3anc |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( # ` { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) = ( phi ` ( O ` X ) ) ) |
| 50 |
12
|
fveq2d |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( phi ` ( O ` X ) ) = ( phi ` N ) ) |
| 51 |
44 49 50
|
3eqtrd |
|- ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( # ` ( `' O " { N } ) ) = ( phi ` N ) ) |