| Step | Hyp | Ref | Expression | 
						
							| 1 |  | proot1hash.g |  |-  G = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) | 
						
							| 2 |  | proot1hash.o |  |-  O = ( od ` G ) | 
						
							| 3 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 4 | 3 2 | odf |  |-  O : ( Base ` G ) --> NN0 | 
						
							| 5 |  | ffn |  |-  ( O : ( Base ` G ) --> NN0 -> O Fn ( Base ` G ) ) | 
						
							| 6 |  | fniniseg2 |  |-  ( O Fn ( Base ` G ) -> ( `' O " { N } ) = { x e. ( Base ` G ) | ( O ` x ) = N } ) | 
						
							| 7 | 4 5 6 | mp2b |  |-  ( `' O " { N } ) = { x e. ( Base ` G ) | ( O ` x ) = N } | 
						
							| 8 |  | simp3 |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> X e. ( `' O " { N } ) ) | 
						
							| 9 |  | fniniseg |  |-  ( O Fn ( Base ` G ) -> ( X e. ( `' O " { N } ) <-> ( X e. ( Base ` G ) /\ ( O ` X ) = N ) ) ) | 
						
							| 10 | 4 5 9 | mp2b |  |-  ( X e. ( `' O " { N } ) <-> ( X e. ( Base ` G ) /\ ( O ` X ) = N ) ) | 
						
							| 11 | 8 10 | sylib |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( X e. ( Base ` G ) /\ ( O ` X ) = N ) ) | 
						
							| 12 | 11 | simprd |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( O ` X ) = N ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( ( O ` x ) = ( O ` X ) <-> ( O ` x ) = N ) ) | 
						
							| 14 | 13 | rabbidv |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } = { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = N } ) | 
						
							| 15 |  | isidom |  |-  ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) | 
						
							| 16 | 15 | simprbi |  |-  ( R e. IDomn -> R e. Domn ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> R e. Domn ) | 
						
							| 18 |  | domnring |  |-  ( R e. Domn -> R e. Ring ) | 
						
							| 19 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 20 | 19 1 | unitgrp |  |-  ( R e. Ring -> G e. Grp ) | 
						
							| 21 | 17 18 20 | 3syl |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> G e. Grp ) | 
						
							| 22 | 3 | subgacs |  |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) ) | 
						
							| 23 |  | acsmre |  |-  ( ( SubGrp ` G ) e. ( ACS ` ( Base ` G ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) | 
						
							| 24 | 21 22 23 | 3syl |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) ) | 
						
							| 25 |  | eqid |  |-  ( mrCls ` ( SubGrp ` G ) ) = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 26 | 25 | mrcssv |  |-  ( ( SubGrp ` G ) e. ( Moore ` ( Base ` G ) ) -> ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) C_ ( Base ` G ) ) | 
						
							| 27 |  | dfrab3ss |  |-  ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) C_ ( Base ` G ) -> { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = N } = ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) i^i { x e. ( Base ` G ) | ( O ` x ) = N } ) ) | 
						
							| 28 | 24 26 27 | 3syl |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = N } = ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) i^i { x e. ( Base ` G ) | ( O ` x ) = N } ) ) | 
						
							| 29 |  | incom |  |-  ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) i^i { x e. ( Base ` G ) | ( O ` x ) = N } ) = ( { x e. ( Base ` G ) | ( O ` x ) = N } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) | 
						
							| 30 |  | simpl1 |  |-  ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> R e. IDomn ) | 
						
							| 31 |  | simpl2 |  |-  ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> N e. NN ) | 
						
							| 32 |  | simpr |  |-  ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> x e. ( `' O " { N } ) ) | 
						
							| 33 |  | simpl3 |  |-  ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> X e. ( `' O " { N } ) ) | 
						
							| 34 | 1 2 25 | proot1mul |  |-  ( ( ( R e. IDomn /\ N e. NN ) /\ ( x e. ( `' O " { N } ) /\ X e. ( `' O " { N } ) ) ) -> x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) | 
						
							| 35 | 30 31 32 33 34 | syl22anc |  |-  ( ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) /\ x e. ( `' O " { N } ) ) -> x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) | 
						
							| 36 | 35 | ex |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( x e. ( `' O " { N } ) -> x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) ) | 
						
							| 37 | 36 | ssrdv |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( `' O " { N } ) C_ ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) | 
						
							| 38 | 7 37 | eqsstrrid |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> { x e. ( Base ` G ) | ( O ` x ) = N } C_ ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) | 
						
							| 39 |  | dfss2 |  |-  ( { x e. ( Base ` G ) | ( O ` x ) = N } C_ ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) <-> ( { x e. ( Base ` G ) | ( O ` x ) = N } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) = { x e. ( Base ` G ) | ( O ` x ) = N } ) | 
						
							| 40 | 38 39 | sylib |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( { x e. ( Base ` G ) | ( O ` x ) = N } i^i ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) ) = { x e. ( Base ` G ) | ( O ` x ) = N } ) | 
						
							| 41 | 29 40 | eqtrid |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) i^i { x e. ( Base ` G ) | ( O ` x ) = N } ) = { x e. ( Base ` G ) | ( O ` x ) = N } ) | 
						
							| 42 | 14 28 41 | 3eqtrrd |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> { x e. ( Base ` G ) | ( O ` x ) = N } = { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) | 
						
							| 43 | 7 42 | eqtrid |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( `' O " { N } ) = { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( # ` ( `' O " { N } ) ) = ( # ` { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) ) | 
						
							| 45 | 11 | simpld |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> X e. ( Base ` G ) ) | 
						
							| 46 |  | simp2 |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> N e. NN ) | 
						
							| 47 | 12 46 | eqeltrd |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( O ` X ) e. NN ) | 
						
							| 48 | 3 2 25 | odngen |  |-  ( ( G e. Grp /\ X e. ( Base ` G ) /\ ( O ` X ) e. NN ) -> ( # ` { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) = ( phi ` ( O ` X ) ) ) | 
						
							| 49 | 21 45 47 48 | syl3anc |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( # ` { x e. ( ( mrCls ` ( SubGrp ` G ) ) ` { X } ) | ( O ` x ) = ( O ` X ) } ) = ( phi ` ( O ` X ) ) ) | 
						
							| 50 | 12 | fveq2d |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( phi ` ( O ` X ) ) = ( phi ` N ) ) | 
						
							| 51 | 44 49 50 | 3eqtrd |  |-  ( ( R e. IDomn /\ N e. NN /\ X e. ( `' O " { N } ) ) -> ( # ` ( `' O " { N } ) ) = ( phi ` N ) ) |