| Step |
Hyp |
Ref |
Expression |
| 1 |
|
proot1hash.g |
|
| 2 |
|
proot1hash.o |
|
| 3 |
|
eqid |
|
| 4 |
3 2
|
odf |
|
| 5 |
|
ffn |
|
| 6 |
|
fniniseg2 |
|
| 7 |
4 5 6
|
mp2b |
|
| 8 |
|
simp3 |
|
| 9 |
|
fniniseg |
|
| 10 |
4 5 9
|
mp2b |
|
| 11 |
8 10
|
sylib |
|
| 12 |
11
|
simprd |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
13
|
rabbidv |
|
| 15 |
|
isidom |
|
| 16 |
15
|
simprbi |
|
| 17 |
16
|
3ad2ant1 |
|
| 18 |
|
domnring |
|
| 19 |
|
eqid |
|
| 20 |
19 1
|
unitgrp |
|
| 21 |
17 18 20
|
3syl |
|
| 22 |
3
|
subgacs |
|
| 23 |
|
acsmre |
|
| 24 |
21 22 23
|
3syl |
|
| 25 |
|
eqid |
|
| 26 |
25
|
mrcssv |
|
| 27 |
|
dfrab3ss |
|
| 28 |
24 26 27
|
3syl |
|
| 29 |
|
incom |
|
| 30 |
|
simpl1 |
|
| 31 |
|
simpl2 |
|
| 32 |
|
simpr |
|
| 33 |
|
simpl3 |
|
| 34 |
1 2 25
|
proot1mul |
|
| 35 |
30 31 32 33 34
|
syl22anc |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
ssrdv |
|
| 38 |
7 37
|
eqsstrrid |
|
| 39 |
|
dfss2 |
|
| 40 |
38 39
|
sylib |
|
| 41 |
29 40
|
eqtrid |
|
| 42 |
14 28 41
|
3eqtrrd |
|
| 43 |
7 42
|
eqtrid |
|
| 44 |
43
|
fveq2d |
|
| 45 |
11
|
simpld |
|
| 46 |
|
simp2 |
|
| 47 |
12 46
|
eqeltrd |
|
| 48 |
3 2 25
|
odngen |
|
| 49 |
21 45 47 48
|
syl3anc |
|
| 50 |
12
|
fveq2d |
|
| 51 |
44 49 50
|
3eqtrd |
|