| Step |
Hyp |
Ref |
Expression |
| 1 |
|
proot1hash.g |
⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s ( Unit ‘ 𝑅 ) ) |
| 2 |
|
proot1hash.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 4 |
3 2
|
odf |
⊢ 𝑂 : ( Base ‘ 𝐺 ) ⟶ ℕ0 |
| 5 |
|
ffn |
⊢ ( 𝑂 : ( Base ‘ 𝐺 ) ⟶ ℕ0 → 𝑂 Fn ( Base ‘ 𝐺 ) ) |
| 6 |
|
fniniseg2 |
⊢ ( 𝑂 Fn ( Base ‘ 𝐺 ) → ( ◡ 𝑂 “ { 𝑁 } ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) |
| 7 |
4 5 6
|
mp2b |
⊢ ( ◡ 𝑂 “ { 𝑁 } ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } |
| 8 |
|
simp3 |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) |
| 9 |
|
fniniseg |
⊢ ( 𝑂 Fn ( Base ‘ 𝐺 ) → ( 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ↔ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ 𝑋 ) = 𝑁 ) ) ) |
| 10 |
4 5 9
|
mp2b |
⊢ ( 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ↔ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ 𝑋 ) = 𝑁 ) ) |
| 11 |
8 10
|
sylib |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ 𝑋 ) = 𝑁 ) ) |
| 12 |
11
|
simprd |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( 𝑂 ‘ 𝑋 ) = 𝑁 ) |
| 13 |
12
|
eqeq2d |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑋 ) ↔ ( 𝑂 ‘ 𝑥 ) = 𝑁 ) ) |
| 14 |
13
|
rabbidv |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑋 ) } = { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) |
| 15 |
|
isidom |
⊢ ( 𝑅 ∈ IDomn ↔ ( 𝑅 ∈ CRing ∧ 𝑅 ∈ Domn ) ) |
| 16 |
15
|
simprbi |
⊢ ( 𝑅 ∈ IDomn → 𝑅 ∈ Domn ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑅 ∈ Domn ) |
| 18 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
| 19 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 20 |
19 1
|
unitgrp |
⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |
| 21 |
17 18 20
|
3syl |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝐺 ∈ Grp ) |
| 22 |
3
|
subgacs |
⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) ) |
| 23 |
|
acsmre |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ ( Base ‘ 𝐺 ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 24 |
21 22 23
|
3syl |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) ) |
| 25 |
|
eqid |
⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) |
| 26 |
25
|
mrcssv |
⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ ( Base ‘ 𝐺 ) ) → ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ⊆ ( Base ‘ 𝐺 ) ) |
| 27 |
|
dfrab3ss |
⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ⊆ ( Base ‘ 𝐺 ) → { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } = ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∩ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) ) |
| 28 |
24 26 27
|
3syl |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } = ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∩ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) ) |
| 29 |
|
incom |
⊢ ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∩ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) = ( { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ) |
| 30 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) ∧ 𝑥 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑅 ∈ IDomn ) |
| 31 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) ∧ 𝑥 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑁 ∈ ℕ ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) ∧ 𝑥 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑥 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) |
| 33 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) ∧ 𝑥 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) |
| 34 |
1 2 25
|
proot1mul |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑥 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) ) → 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ) |
| 35 |
30 31 32 33 34
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) ∧ 𝑥 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ) |
| 36 |
35
|
ex |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( 𝑥 ∈ ( ◡ 𝑂 “ { 𝑁 } ) → 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ) ) |
| 37 |
36
|
ssrdv |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( ◡ 𝑂 “ { 𝑁 } ) ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ) |
| 38 |
7 37
|
eqsstrrid |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ) |
| 39 |
|
dfss2 |
⊢ ( { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ⊆ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ↔ ( { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) |
| 40 |
38 39
|
sylib |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) |
| 41 |
29 40
|
eqtrid |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∩ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } ) |
| 42 |
14 28 41
|
3eqtrrd |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ( 𝑂 ‘ 𝑥 ) = 𝑁 } = { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑋 ) } ) |
| 43 |
7 42
|
eqtrid |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( ◡ 𝑂 “ { 𝑁 } ) = { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑋 ) } ) |
| 44 |
43
|
fveq2d |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( ♯ ‘ ( ◡ 𝑂 “ { 𝑁 } ) ) = ( ♯ ‘ { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑋 ) } ) ) |
| 45 |
11
|
simpld |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 46 |
|
simp2 |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → 𝑁 ∈ ℕ ) |
| 47 |
12 46
|
eqeltrd |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( 𝑂 ‘ 𝑋 ) ∈ ℕ ) |
| 48 |
3 2 25
|
odngen |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑂 ‘ 𝑋 ) ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑋 ) } ) = ( ϕ ‘ ( 𝑂 ‘ 𝑋 ) ) ) |
| 49 |
21 45 47 48
|
syl3anc |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( ♯ ‘ { 𝑥 ∈ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ { 𝑋 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑋 ) } ) = ( ϕ ‘ ( 𝑂 ‘ 𝑋 ) ) ) |
| 50 |
12
|
fveq2d |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( ϕ ‘ ( 𝑂 ‘ 𝑋 ) ) = ( ϕ ‘ 𝑁 ) ) |
| 51 |
44 49 50
|
3eqtrd |
⊢ ( ( 𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( ◡ 𝑂 “ { 𝑁 } ) ) → ( ♯ ‘ ( ◡ 𝑂 “ { 𝑁 } ) ) = ( ϕ ‘ 𝑁 ) ) |