| Step | Hyp | Ref | Expression | 
						
							| 1 |  | proot1ex.g | ⊢ 𝐺  =  ( ( mulGrp ‘ ℂfld )  ↾s  ( ℂ  ∖  { 0 } ) ) | 
						
							| 2 |  | proot1ex.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 4 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 5 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 6 |  | rpdivcl | ⊢ ( ( 2  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  →  ( 2  /  𝑁 )  ∈  ℝ+ ) | 
						
							| 7 | 4 5 6 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  /  𝑁 )  ∈  ℝ+ ) | 
						
							| 8 | 7 | rpcnd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  /  𝑁 )  ∈  ℂ ) | 
						
							| 9 |  | cxpcl | ⊢ ( ( - 1  ∈  ℂ  ∧  ( 2  /  𝑁 )  ∈  ℂ )  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ℂ ) | 
						
							| 10 | 3 8 9 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ℂ ) | 
						
							| 11 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  - 1  ∈  ℂ ) | 
						
							| 12 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  - 1  ≠  0 ) | 
						
							| 14 | 11 13 8 | cxpne0d | ⊢ ( 𝑁  ∈  ℕ  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ≠  0 ) | 
						
							| 15 |  | eldifsn | ⊢ ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ℂ  ∖  { 0 } )  ↔  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ℂ  ∧  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ≠  0 ) ) | 
						
							| 16 | 10 14 15 | sylanbrc | ⊢ ( 𝑁  ∈  ℕ  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 17 | 3 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  - 1  ∈  ℂ ) | 
						
							| 18 | 12 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  - 1  ≠  0 ) | 
						
							| 19 |  | nn0cn | ⊢ ( 𝑥  ∈  ℕ0  →  𝑥  ∈  ℂ ) | 
						
							| 20 |  | mulcl | ⊢ ( ( ( 2  /  𝑁 )  ∈  ℂ  ∧  𝑥  ∈  ℂ )  →  ( ( 2  /  𝑁 )  ·  𝑥 )  ∈  ℂ ) | 
						
							| 21 | 8 19 20 | syl2an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( 2  /  𝑁 )  ·  𝑥 )  ∈  ℂ ) | 
						
							| 22 | 17 18 21 | cxpefd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( - 1 ↑𝑐 ( ( 2  /  𝑁 )  ·  𝑥 ) )  =  ( exp ‘ ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) ) ) ) | 
						
							| 23 | 22 | eqeq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( - 1 ↑𝑐 ( ( 2  /  𝑁 )  ·  𝑥 ) )  =  1  ↔  ( exp ‘ ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) ) )  =  1 ) ) | 
						
							| 24 |  | logcl | ⊢ ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0 )  →  ( log ‘ - 1 )  ∈  ℂ ) | 
						
							| 25 | 3 12 24 | mp2an | ⊢ ( log ‘ - 1 )  ∈  ℂ | 
						
							| 26 |  | mulcl | ⊢ ( ( ( ( 2  /  𝑁 )  ·  𝑥 )  ∈  ℂ  ∧  ( log ‘ - 1 )  ∈  ℂ )  →  ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  ∈  ℂ ) | 
						
							| 27 | 21 25 26 | sylancl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  ∈  ℂ ) | 
						
							| 28 |  | efeq1 | ⊢ ( ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  ∈  ℂ  →  ( ( exp ‘ ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) ) )  =  1  ↔  ( ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  /  ( i  ·  ( 2  ·  π ) ) )  ∈  ℤ ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( exp ‘ ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) ) )  =  1  ↔  ( ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  /  ( i  ·  ( 2  ·  π ) ) )  ∈  ℤ ) ) | 
						
							| 30 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  2  ∈  ℂ ) | 
						
							| 32 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 34 | 19 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℂ ) | 
						
							| 35 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  𝑁  ≠  0 ) | 
						
							| 37 | 31 33 34 36 | div13d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( 2  /  𝑁 )  ·  𝑥 )  =  ( ( 𝑥  /  𝑁 )  ·  2 ) ) | 
						
							| 38 |  | logm1 | ⊢ ( log ‘ - 1 )  =  ( i  ·  π ) | 
						
							| 39 | 38 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( log ‘ - 1 )  =  ( i  ·  π ) ) | 
						
							| 40 | 37 39 | oveq12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  =  ( ( ( 𝑥  /  𝑁 )  ·  2 )  ·  ( i  ·  π ) ) ) | 
						
							| 41 | 34 33 36 | divcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥  /  𝑁 )  ∈  ℂ ) | 
						
							| 42 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 43 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 44 | 42 43 | mulcli | ⊢ ( i  ·  π )  ∈  ℂ | 
						
							| 45 | 44 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( i  ·  π )  ∈  ℂ ) | 
						
							| 46 | 41 31 45 | mulassd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( 𝑥  /  𝑁 )  ·  2 )  ·  ( i  ·  π ) )  =  ( ( 𝑥  /  𝑁 )  ·  ( 2  ·  ( i  ·  π ) ) ) ) | 
						
							| 47 | 42 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  i  ∈  ℂ ) | 
						
							| 48 | 43 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  π  ∈  ℂ ) | 
						
							| 49 | 31 47 48 | mul12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( 2  ·  ( i  ·  π ) )  =  ( i  ·  ( 2  ·  π ) ) ) | 
						
							| 50 | 49 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑥  /  𝑁 )  ·  ( 2  ·  ( i  ·  π ) ) )  =  ( ( 𝑥  /  𝑁 )  ·  ( i  ·  ( 2  ·  π ) ) ) ) | 
						
							| 51 | 40 46 50 | 3eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  =  ( ( 𝑥  /  𝑁 )  ·  ( i  ·  ( 2  ·  π ) ) ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  /  ( i  ·  ( 2  ·  π ) ) )  =  ( ( ( 𝑥  /  𝑁 )  ·  ( i  ·  ( 2  ·  π ) ) )  /  ( i  ·  ( 2  ·  π ) ) ) ) | 
						
							| 53 | 30 43 | mulcli | ⊢ ( 2  ·  π )  ∈  ℂ | 
						
							| 54 | 42 53 | mulcli | ⊢ ( i  ·  ( 2  ·  π ) )  ∈  ℂ | 
						
							| 55 | 54 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( i  ·  ( 2  ·  π ) )  ∈  ℂ ) | 
						
							| 56 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 57 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 58 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 59 |  | pipos | ⊢ 0  <  π | 
						
							| 60 | 58 59 | gt0ne0ii | ⊢ π  ≠  0 | 
						
							| 61 | 30 43 57 60 | mulne0i | ⊢ ( 2  ·  π )  ≠  0 | 
						
							| 62 | 42 53 56 61 | mulne0i | ⊢ ( i  ·  ( 2  ·  π ) )  ≠  0 | 
						
							| 63 | 62 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( i  ·  ( 2  ·  π ) )  ≠  0 ) | 
						
							| 64 | 41 55 63 | divcan4d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( 𝑥  /  𝑁 )  ·  ( i  ·  ( 2  ·  π ) ) )  /  ( i  ·  ( 2  ·  π ) ) )  =  ( 𝑥  /  𝑁 ) ) | 
						
							| 65 | 52 64 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  /  ( i  ·  ( 2  ·  π ) ) )  =  ( 𝑥  /  𝑁 ) ) | 
						
							| 66 | 65 | eleq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( ( ( ( 2  /  𝑁 )  ·  𝑥 )  ·  ( log ‘ - 1 ) )  /  ( i  ·  ( 2  ·  π ) ) )  ∈  ℤ  ↔  ( 𝑥  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 67 | 23 29 66 | 3bitrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( - 1 ↑𝑐 ( ( 2  /  𝑁 )  ·  𝑥 ) )  =  1  ↔  ( 𝑥  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 68 | 8 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( 2  /  𝑁 )  ∈  ℂ ) | 
						
							| 69 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 70 | 17 68 69 | cxpmul2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( - 1 ↑𝑐 ( ( 2  /  𝑁 )  ·  𝑥 ) )  =  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝑥 ) ) | 
						
							| 71 |  | cnfldexp | ⊢ ( ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ℂ  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝑥 ) ) | 
						
							| 72 | 10 71 | sylan | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ↑ 𝑥 ) ) | 
						
							| 73 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 74 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 75 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 76 |  | cndrng | ⊢ ℂfld  ∈  DivRing | 
						
							| 77 | 74 75 76 | drngui | ⊢ ( ℂ  ∖  { 0 } )  =  ( Unit ‘ ℂfld ) | 
						
							| 78 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 79 | 77 78 | unitsubm | ⊢ ( ℂfld  ∈  Ring  →  ( ℂ  ∖  { 0 } )  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 80 | 73 79 | mp1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ℂ  ∖  { 0 } )  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 81 | 16 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 82 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) )  =  ( .g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 83 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 84 | 82 1 83 | submmulg | ⊢ ( ( ( ℂ  ∖  { 0 } )  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) )  ∧  𝑥  ∈  ℕ0  ∧  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  ( 𝑥 ( .g ‘ 𝐺 ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ) ) | 
						
							| 85 | 80 69 81 84 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 ( .g ‘ ( mulGrp ‘ ℂfld ) ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  ( 𝑥 ( .g ‘ 𝐺 ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ) ) | 
						
							| 86 | 70 72 85 | 3eqtr2rd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 ( .g ‘ 𝐺 ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  ( - 1 ↑𝑐 ( ( 2  /  𝑁 )  ·  𝑥 ) ) ) | 
						
							| 87 | 86 | eqeq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑥 ( .g ‘ 𝐺 ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  1  ↔  ( - 1 ↑𝑐 ( ( 2  /  𝑁 )  ·  𝑥 ) )  =  1 ) ) | 
						
							| 88 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 90 |  | nn0z | ⊢ ( 𝑥  ∈  ℕ0  →  𝑥  ∈  ℤ ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℤ ) | 
						
							| 92 |  | dvdsval2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0  ∧  𝑥  ∈  ℤ )  →  ( 𝑁  ∥  𝑥  ↔  ( 𝑥  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 93 | 89 36 91 92 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑁  ∥  𝑥  ↔  ( 𝑥  /  𝑁 )  ∈  ℤ ) ) | 
						
							| 94 | 67 87 93 | 3bitr4rd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑁  ∥  𝑥  ↔  ( 𝑥 ( .g ‘ 𝐺 ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  1 ) ) | 
						
							| 95 | 94 | ralrimiva | ⊢ ( 𝑁  ∈  ℕ  →  ∀ 𝑥  ∈  ℕ0 ( 𝑁  ∥  𝑥  ↔  ( 𝑥 ( .g ‘ 𝐺 ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  1 ) ) | 
						
							| 96 | 77 1 | unitgrp | ⊢ ( ℂfld  ∈  Ring  →  𝐺  ∈  Grp ) | 
						
							| 97 | 73 96 | mp1i | ⊢ ( 𝑁  ∈  ℕ  →  𝐺  ∈  Grp ) | 
						
							| 98 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 99 | 77 1 | unitgrpbas | ⊢ ( ℂ  ∖  { 0 } )  =  ( Base ‘ 𝐺 ) | 
						
							| 100 |  | cnfld1 | ⊢ 1  =  ( 1r ‘ ℂfld ) | 
						
							| 101 | 77 1 100 | unitgrpid | ⊢ ( ℂfld  ∈  Ring  →  1  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 102 | 73 101 | ax-mp | ⊢ 1  =  ( 0g ‘ 𝐺 ) | 
						
							| 103 | 99 2 83 102 | odeq | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  =  ( 𝑂 ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑁  ∥  𝑥  ↔  ( 𝑥 ( .g ‘ 𝐺 ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  1 ) ) ) | 
						
							| 104 | 97 16 98 103 | syl3anc | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  =  ( 𝑂 ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑁  ∥  𝑥  ↔  ( 𝑥 ( .g ‘ 𝐺 ) ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  1 ) ) ) | 
						
							| 105 | 95 104 | mpbird | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  =  ( 𝑂 ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) ) ) | 
						
							| 106 | 105 | eqcomd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑂 ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  𝑁 ) | 
						
							| 107 | 99 2 | odf | ⊢ 𝑂 : ( ℂ  ∖  { 0 } ) ⟶ ℕ0 | 
						
							| 108 |  | ffn | ⊢ ( 𝑂 : ( ℂ  ∖  { 0 } ) ⟶ ℕ0  →  𝑂  Fn  ( ℂ  ∖  { 0 } ) ) | 
						
							| 109 | 107 108 | ax-mp | ⊢ 𝑂  Fn  ( ℂ  ∖  { 0 } ) | 
						
							| 110 |  | fniniseg | ⊢ ( 𝑂  Fn  ( ℂ  ∖  { 0 } )  →  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ◡ 𝑂  “  { 𝑁 } )  ↔  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ℂ  ∖  { 0 } )  ∧  ( 𝑂 ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  𝑁 ) ) ) | 
						
							| 111 | 109 110 | mp1i | ⊢ ( 𝑁  ∈  ℕ  →  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ◡ 𝑂  “  { 𝑁 } )  ↔  ( ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ℂ  ∖  { 0 } )  ∧  ( 𝑂 ‘ ( - 1 ↑𝑐 ( 2  /  𝑁 ) ) )  =  𝑁 ) ) ) | 
						
							| 112 | 16 106 111 | mpbir2and | ⊢ ( 𝑁  ∈  ℕ  →  ( - 1 ↑𝑐 ( 2  /  𝑁 ) )  ∈  ( ◡ 𝑂  “  { 𝑁 } ) ) |