Step |
Hyp |
Ref |
Expression |
1 |
|
proot1ex.g |
|- G = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
2 |
|
proot1ex.o |
|- O = ( od ` G ) |
3 |
|
neg1cn |
|- -u 1 e. CC |
4 |
|
2rp |
|- 2 e. RR+ |
5 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
6 |
|
rpdivcl |
|- ( ( 2 e. RR+ /\ N e. RR+ ) -> ( 2 / N ) e. RR+ ) |
7 |
4 5 6
|
sylancr |
|- ( N e. NN -> ( 2 / N ) e. RR+ ) |
8 |
7
|
rpcnd |
|- ( N e. NN -> ( 2 / N ) e. CC ) |
9 |
|
cxpcl |
|- ( ( -u 1 e. CC /\ ( 2 / N ) e. CC ) -> ( -u 1 ^c ( 2 / N ) ) e. CC ) |
10 |
3 8 9
|
sylancr |
|- ( N e. NN -> ( -u 1 ^c ( 2 / N ) ) e. CC ) |
11 |
3
|
a1i |
|- ( N e. NN -> -u 1 e. CC ) |
12 |
|
neg1ne0 |
|- -u 1 =/= 0 |
13 |
12
|
a1i |
|- ( N e. NN -> -u 1 =/= 0 ) |
14 |
11 13 8
|
cxpne0d |
|- ( N e. NN -> ( -u 1 ^c ( 2 / N ) ) =/= 0 ) |
15 |
|
eldifsn |
|- ( ( -u 1 ^c ( 2 / N ) ) e. ( CC \ { 0 } ) <-> ( ( -u 1 ^c ( 2 / N ) ) e. CC /\ ( -u 1 ^c ( 2 / N ) ) =/= 0 ) ) |
16 |
10 14 15
|
sylanbrc |
|- ( N e. NN -> ( -u 1 ^c ( 2 / N ) ) e. ( CC \ { 0 } ) ) |
17 |
3
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> -u 1 e. CC ) |
18 |
12
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> -u 1 =/= 0 ) |
19 |
|
nn0cn |
|- ( x e. NN0 -> x e. CC ) |
20 |
|
mulcl |
|- ( ( ( 2 / N ) e. CC /\ x e. CC ) -> ( ( 2 / N ) x. x ) e. CC ) |
21 |
8 19 20
|
syl2an |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( 2 / N ) x. x ) e. CC ) |
22 |
17 18 21
|
cxpefd |
|- ( ( N e. NN /\ x e. NN0 ) -> ( -u 1 ^c ( ( 2 / N ) x. x ) ) = ( exp ` ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) ) ) |
23 |
22
|
eqeq1d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( -u 1 ^c ( ( 2 / N ) x. x ) ) = 1 <-> ( exp ` ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) ) = 1 ) ) |
24 |
|
logcl |
|- ( ( -u 1 e. CC /\ -u 1 =/= 0 ) -> ( log ` -u 1 ) e. CC ) |
25 |
3 12 24
|
mp2an |
|- ( log ` -u 1 ) e. CC |
26 |
|
mulcl |
|- ( ( ( ( 2 / N ) x. x ) e. CC /\ ( log ` -u 1 ) e. CC ) -> ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) e. CC ) |
27 |
21 25 26
|
sylancl |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) e. CC ) |
28 |
|
efeq1 |
|- ( ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) e. CC -> ( ( exp ` ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) ) = 1 <-> ( ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
29 |
27 28
|
syl |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( exp ` ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) ) = 1 <-> ( ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
30 |
|
2cn |
|- 2 e. CC |
31 |
30
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> 2 e. CC ) |
32 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
33 |
32
|
adantr |
|- ( ( N e. NN /\ x e. NN0 ) -> N e. CC ) |
34 |
19
|
adantl |
|- ( ( N e. NN /\ x e. NN0 ) -> x e. CC ) |
35 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
36 |
35
|
adantr |
|- ( ( N e. NN /\ x e. NN0 ) -> N =/= 0 ) |
37 |
31 33 34 36
|
div13d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( 2 / N ) x. x ) = ( ( x / N ) x. 2 ) ) |
38 |
|
logm1 |
|- ( log ` -u 1 ) = ( _i x. _pi ) |
39 |
38
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> ( log ` -u 1 ) = ( _i x. _pi ) ) |
40 |
37 39
|
oveq12d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) = ( ( ( x / N ) x. 2 ) x. ( _i x. _pi ) ) ) |
41 |
34 33 36
|
divcld |
|- ( ( N e. NN /\ x e. NN0 ) -> ( x / N ) e. CC ) |
42 |
|
ax-icn |
|- _i e. CC |
43 |
|
picn |
|- _pi e. CC |
44 |
42 43
|
mulcli |
|- ( _i x. _pi ) e. CC |
45 |
44
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> ( _i x. _pi ) e. CC ) |
46 |
41 31 45
|
mulassd |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( ( x / N ) x. 2 ) x. ( _i x. _pi ) ) = ( ( x / N ) x. ( 2 x. ( _i x. _pi ) ) ) ) |
47 |
42
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> _i e. CC ) |
48 |
43
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> _pi e. CC ) |
49 |
31 47 48
|
mul12d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( 2 x. ( _i x. _pi ) ) = ( _i x. ( 2 x. _pi ) ) ) |
50 |
49
|
oveq2d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( x / N ) x. ( 2 x. ( _i x. _pi ) ) ) = ( ( x / N ) x. ( _i x. ( 2 x. _pi ) ) ) ) |
51 |
40 46 50
|
3eqtrd |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) = ( ( x / N ) x. ( _i x. ( 2 x. _pi ) ) ) ) |
52 |
51
|
oveq1d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( ( ( x / N ) x. ( _i x. ( 2 x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) ) |
53 |
30 43
|
mulcli |
|- ( 2 x. _pi ) e. CC |
54 |
42 53
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
55 |
54
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
56 |
|
ine0 |
|- _i =/= 0 |
57 |
|
2ne0 |
|- 2 =/= 0 |
58 |
|
pire |
|- _pi e. RR |
59 |
|
pipos |
|- 0 < _pi |
60 |
58 59
|
gt0ne0ii |
|- _pi =/= 0 |
61 |
30 43 57 60
|
mulne0i |
|- ( 2 x. _pi ) =/= 0 |
62 |
42 53 56 61
|
mulne0i |
|- ( _i x. ( 2 x. _pi ) ) =/= 0 |
63 |
62
|
a1i |
|- ( ( N e. NN /\ x e. NN0 ) -> ( _i x. ( 2 x. _pi ) ) =/= 0 ) |
64 |
41 55 63
|
divcan4d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( ( x / N ) x. ( _i x. ( 2 x. _pi ) ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( x / N ) ) |
65 |
52 64
|
eqtrd |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) / ( _i x. ( 2 x. _pi ) ) ) = ( x / N ) ) |
66 |
65
|
eleq1d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( ( ( ( 2 / N ) x. x ) x. ( log ` -u 1 ) ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ <-> ( x / N ) e. ZZ ) ) |
67 |
23 29 66
|
3bitrd |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( -u 1 ^c ( ( 2 / N ) x. x ) ) = 1 <-> ( x / N ) e. ZZ ) ) |
68 |
8
|
adantr |
|- ( ( N e. NN /\ x e. NN0 ) -> ( 2 / N ) e. CC ) |
69 |
|
simpr |
|- ( ( N e. NN /\ x e. NN0 ) -> x e. NN0 ) |
70 |
17 68 69
|
cxpmul2d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( -u 1 ^c ( ( 2 / N ) x. x ) ) = ( ( -u 1 ^c ( 2 / N ) ) ^ x ) ) |
71 |
|
cnfldexp |
|- ( ( ( -u 1 ^c ( 2 / N ) ) e. CC /\ x e. NN0 ) -> ( x ( .g ` ( mulGrp ` CCfld ) ) ( -u 1 ^c ( 2 / N ) ) ) = ( ( -u 1 ^c ( 2 / N ) ) ^ x ) ) |
72 |
10 71
|
sylan |
|- ( ( N e. NN /\ x e. NN0 ) -> ( x ( .g ` ( mulGrp ` CCfld ) ) ( -u 1 ^c ( 2 / N ) ) ) = ( ( -u 1 ^c ( 2 / N ) ) ^ x ) ) |
73 |
|
cnring |
|- CCfld e. Ring |
74 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
75 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
76 |
|
cndrng |
|- CCfld e. DivRing |
77 |
74 75 76
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
78 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
79 |
77 78
|
unitsubm |
|- ( CCfld e. Ring -> ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
80 |
73 79
|
mp1i |
|- ( ( N e. NN /\ x e. NN0 ) -> ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
81 |
16
|
adantr |
|- ( ( N e. NN /\ x e. NN0 ) -> ( -u 1 ^c ( 2 / N ) ) e. ( CC \ { 0 } ) ) |
82 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
83 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
84 |
82 1 83
|
submmulg |
|- ( ( ( CC \ { 0 } ) e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ x e. NN0 /\ ( -u 1 ^c ( 2 / N ) ) e. ( CC \ { 0 } ) ) -> ( x ( .g ` ( mulGrp ` CCfld ) ) ( -u 1 ^c ( 2 / N ) ) ) = ( x ( .g ` G ) ( -u 1 ^c ( 2 / N ) ) ) ) |
85 |
80 69 81 84
|
syl3anc |
|- ( ( N e. NN /\ x e. NN0 ) -> ( x ( .g ` ( mulGrp ` CCfld ) ) ( -u 1 ^c ( 2 / N ) ) ) = ( x ( .g ` G ) ( -u 1 ^c ( 2 / N ) ) ) ) |
86 |
70 72 85
|
3eqtr2rd |
|- ( ( N e. NN /\ x e. NN0 ) -> ( x ( .g ` G ) ( -u 1 ^c ( 2 / N ) ) ) = ( -u 1 ^c ( ( 2 / N ) x. x ) ) ) |
87 |
86
|
eqeq1d |
|- ( ( N e. NN /\ x e. NN0 ) -> ( ( x ( .g ` G ) ( -u 1 ^c ( 2 / N ) ) ) = 1 <-> ( -u 1 ^c ( ( 2 / N ) x. x ) ) = 1 ) ) |
88 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
89 |
88
|
adantr |
|- ( ( N e. NN /\ x e. NN0 ) -> N e. ZZ ) |
90 |
|
nn0z |
|- ( x e. NN0 -> x e. ZZ ) |
91 |
90
|
adantl |
|- ( ( N e. NN /\ x e. NN0 ) -> x e. ZZ ) |
92 |
|
dvdsval2 |
|- ( ( N e. ZZ /\ N =/= 0 /\ x e. ZZ ) -> ( N || x <-> ( x / N ) e. ZZ ) ) |
93 |
89 36 91 92
|
syl3anc |
|- ( ( N e. NN /\ x e. NN0 ) -> ( N || x <-> ( x / N ) e. ZZ ) ) |
94 |
67 87 93
|
3bitr4rd |
|- ( ( N e. NN /\ x e. NN0 ) -> ( N || x <-> ( x ( .g ` G ) ( -u 1 ^c ( 2 / N ) ) ) = 1 ) ) |
95 |
94
|
ralrimiva |
|- ( N e. NN -> A. x e. NN0 ( N || x <-> ( x ( .g ` G ) ( -u 1 ^c ( 2 / N ) ) ) = 1 ) ) |
96 |
77 1
|
unitgrp |
|- ( CCfld e. Ring -> G e. Grp ) |
97 |
73 96
|
mp1i |
|- ( N e. NN -> G e. Grp ) |
98 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
99 |
77 1
|
unitgrpbas |
|- ( CC \ { 0 } ) = ( Base ` G ) |
100 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
101 |
77 1 100
|
unitgrpid |
|- ( CCfld e. Ring -> 1 = ( 0g ` G ) ) |
102 |
73 101
|
ax-mp |
|- 1 = ( 0g ` G ) |
103 |
99 2 83 102
|
odeq |
|- ( ( G e. Grp /\ ( -u 1 ^c ( 2 / N ) ) e. ( CC \ { 0 } ) /\ N e. NN0 ) -> ( N = ( O ` ( -u 1 ^c ( 2 / N ) ) ) <-> A. x e. NN0 ( N || x <-> ( x ( .g ` G ) ( -u 1 ^c ( 2 / N ) ) ) = 1 ) ) ) |
104 |
97 16 98 103
|
syl3anc |
|- ( N e. NN -> ( N = ( O ` ( -u 1 ^c ( 2 / N ) ) ) <-> A. x e. NN0 ( N || x <-> ( x ( .g ` G ) ( -u 1 ^c ( 2 / N ) ) ) = 1 ) ) ) |
105 |
95 104
|
mpbird |
|- ( N e. NN -> N = ( O ` ( -u 1 ^c ( 2 / N ) ) ) ) |
106 |
105
|
eqcomd |
|- ( N e. NN -> ( O ` ( -u 1 ^c ( 2 / N ) ) ) = N ) |
107 |
99 2
|
odf |
|- O : ( CC \ { 0 } ) --> NN0 |
108 |
|
ffn |
|- ( O : ( CC \ { 0 } ) --> NN0 -> O Fn ( CC \ { 0 } ) ) |
109 |
107 108
|
ax-mp |
|- O Fn ( CC \ { 0 } ) |
110 |
|
fniniseg |
|- ( O Fn ( CC \ { 0 } ) -> ( ( -u 1 ^c ( 2 / N ) ) e. ( `' O " { N } ) <-> ( ( -u 1 ^c ( 2 / N ) ) e. ( CC \ { 0 } ) /\ ( O ` ( -u 1 ^c ( 2 / N ) ) ) = N ) ) ) |
111 |
109 110
|
mp1i |
|- ( N e. NN -> ( ( -u 1 ^c ( 2 / N ) ) e. ( `' O " { N } ) <-> ( ( -u 1 ^c ( 2 / N ) ) e. ( CC \ { 0 } ) /\ ( O ` ( -u 1 ^c ( 2 / N ) ) ) = N ) ) ) |
112 |
16 106 111
|
mpbir2and |
|- ( N e. NN -> ( -u 1 ^c ( 2 / N ) ) e. ( `' O " { N } ) ) |