| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idomsubgmo.g |
|
| 2 |
|
proot1mul.o |
|
| 3 |
|
proot1mul.k |
|
| 4 |
|
simpll |
|
| 5 |
|
isidom |
|
| 6 |
5
|
simprbi |
|
| 7 |
|
domnring |
|
| 8 |
|
eqid |
|
| 9 |
8 1
|
unitgrp |
|
| 10 |
4 6 7 9
|
4syl |
|
| 11 |
|
eqid |
|
| 12 |
11
|
subgacs |
|
| 13 |
|
acsmre |
|
| 14 |
10 12 13
|
3syl |
|
| 15 |
|
simprl |
|
| 16 |
11 2
|
odf |
|
| 17 |
|
ffn |
|
| 18 |
|
fniniseg |
|
| 19 |
16 17 18
|
mp2b |
|
| 20 |
15 19
|
sylib |
|
| 21 |
20
|
simpld |
|
| 22 |
21
|
snssd |
|
| 23 |
14 3 22
|
mrcssidd |
|
| 24 |
|
snssg |
|
| 25 |
15 24
|
syl |
|
| 26 |
23 25
|
mpbird |
|
| 27 |
1
|
idomsubgmo |
|
| 28 |
27
|
adantr |
|
| 29 |
3
|
mrccl |
|
| 30 |
14 22 29
|
syl2anc |
|
| 31 |
20
|
simprd |
|
| 32 |
|
simplr |
|
| 33 |
31 32
|
eqeltrd |
|
| 34 |
11 2 3
|
odhash2 |
|
| 35 |
10 21 33 34
|
syl3anc |
|
| 36 |
35 31
|
eqtrd |
|
| 37 |
|
simprr |
|
| 38 |
|
fniniseg |
|
| 39 |
16 17 38
|
mp2b |
|
| 40 |
37 39
|
sylib |
|
| 41 |
40
|
simpld |
|
| 42 |
41
|
snssd |
|
| 43 |
3
|
mrccl |
|
| 44 |
14 42 43
|
syl2anc |
|
| 45 |
40
|
simprd |
|
| 46 |
45 32
|
eqeltrd |
|
| 47 |
11 2 3
|
odhash2 |
|
| 48 |
10 41 46 47
|
syl3anc |
|
| 49 |
48 45
|
eqtrd |
|
| 50 |
|
fveqeq2 |
|
| 51 |
|
fveqeq2 |
|
| 52 |
50 51
|
rmoi |
|
| 53 |
28 30 36 44 49 52
|
syl122anc |
|
| 54 |
26 53
|
eleqtrd |
|