Step |
Hyp |
Ref |
Expression |
1 |
|
psmeasure.x |
|- ( ph -> X e. V ) |
2 |
|
psmeasure.h |
|- ( ph -> H : X --> ( 0 [,] +oo ) ) |
3 |
|
psmeasure.m |
|- M = ( x e. ~P X |-> ( sum^ ` ( H |` x ) ) ) |
4 |
|
simpr |
|- ( ( ph /\ x e. ~P X ) -> x e. ~P X ) |
5 |
2
|
adantr |
|- ( ( ph /\ x e. ~P X ) -> H : X --> ( 0 [,] +oo ) ) |
6 |
4
|
elpwid |
|- ( ( ph /\ x e. ~P X ) -> x C_ X ) |
7 |
|
fssres |
|- ( ( H : X --> ( 0 [,] +oo ) /\ x C_ X ) -> ( H |` x ) : x --> ( 0 [,] +oo ) ) |
8 |
5 6 7
|
syl2anc |
|- ( ( ph /\ x e. ~P X ) -> ( H |` x ) : x --> ( 0 [,] +oo ) ) |
9 |
4 8
|
sge0cl |
|- ( ( ph /\ x e. ~P X ) -> ( sum^ ` ( H |` x ) ) e. ( 0 [,] +oo ) ) |
10 |
9 3
|
fmptd |
|- ( ph -> M : ~P X --> ( 0 [,] +oo ) ) |
11 |
3 9
|
dmmptd |
|- ( ph -> dom M = ~P X ) |
12 |
11
|
feq2d |
|- ( ph -> ( M : dom M --> ( 0 [,] +oo ) <-> M : ~P X --> ( 0 [,] +oo ) ) ) |
13 |
10 12
|
mpbird |
|- ( ph -> M : dom M --> ( 0 [,] +oo ) ) |
14 |
|
pwsal |
|- ( X e. V -> ~P X e. SAlg ) |
15 |
1 14
|
syl |
|- ( ph -> ~P X e. SAlg ) |
16 |
11 15
|
eqeltrd |
|- ( ph -> dom M e. SAlg ) |
17 |
13 16
|
jca |
|- ( ph -> ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) ) |
18 |
|
reseq2 |
|- ( x = (/) -> ( H |` x ) = ( H |` (/) ) ) |
19 |
18
|
fveq2d |
|- ( x = (/) -> ( sum^ ` ( H |` x ) ) = ( sum^ ` ( H |` (/) ) ) ) |
20 |
|
0elpw |
|- (/) e. ~P X |
21 |
20
|
a1i |
|- ( ph -> (/) e. ~P X ) |
22 |
|
fvexd |
|- ( ph -> ( sum^ ` ( H |` (/) ) ) e. _V ) |
23 |
3 19 21 22
|
fvmptd3 |
|- ( ph -> ( M ` (/) ) = ( sum^ ` ( H |` (/) ) ) ) |
24 |
|
res0 |
|- ( H |` (/) ) = (/) |
25 |
24
|
fveq2i |
|- ( sum^ ` ( H |` (/) ) ) = ( sum^ ` (/) ) |
26 |
|
sge00 |
|- ( sum^ ` (/) ) = 0 |
27 |
25 26
|
eqtri |
|- ( sum^ ` ( H |` (/) ) ) = 0 |
28 |
27
|
a1i |
|- ( ph -> ( sum^ ` ( H |` (/) ) ) = 0 ) |
29 |
23 28
|
eqtrd |
|- ( ph -> ( M ` (/) ) = 0 ) |
30 |
|
simpl |
|- ( ( ph /\ y e. ~P dom M ) -> ph ) |
31 |
|
simpr |
|- ( ( ph /\ y e. ~P dom M ) -> y e. ~P dom M ) |
32 |
11
|
pweqd |
|- ( ph -> ~P dom M = ~P ~P X ) |
33 |
32
|
adantr |
|- ( ( ph /\ y e. ~P dom M ) -> ~P dom M = ~P ~P X ) |
34 |
31 33
|
eleqtrd |
|- ( ( ph /\ y e. ~P dom M ) -> y e. ~P ~P X ) |
35 |
|
elpwi |
|- ( y e. ~P ~P X -> y C_ ~P X ) |
36 |
34 35
|
syl |
|- ( ( ph /\ y e. ~P dom M ) -> y C_ ~P X ) |
37 |
1
|
ad2antrr |
|- ( ( ( ph /\ y C_ ~P X ) /\ Disj_ w e. y w ) -> X e. V ) |
38 |
2
|
ad2antrr |
|- ( ( ( ph /\ y C_ ~P X ) /\ Disj_ w e. y w ) -> H : X --> ( 0 [,] +oo ) ) |
39 |
10
|
ad2antrr |
|- ( ( ( ph /\ y C_ ~P X ) /\ Disj_ w e. y w ) -> M : ~P X --> ( 0 [,] +oo ) ) |
40 |
|
simplr |
|- ( ( ( ph /\ y C_ ~P X ) /\ Disj_ w e. y w ) -> y C_ ~P X ) |
41 |
|
id |
|- ( w = z -> w = z ) |
42 |
41
|
cbvdisjv |
|- ( Disj_ w e. y w <-> Disj_ z e. y z ) |
43 |
42
|
biimpi |
|- ( Disj_ w e. y w -> Disj_ z e. y z ) |
44 |
43
|
adantl |
|- ( ( ( ph /\ y C_ ~P X ) /\ Disj_ w e. y w ) -> Disj_ z e. y z ) |
45 |
37 38 3 39 40 44
|
psmeasurelem |
|- ( ( ( ph /\ y C_ ~P X ) /\ Disj_ w e. y w ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) |
46 |
45
|
adantrl |
|- ( ( ( ph /\ y C_ ~P X ) /\ ( y ~<_ _om /\ Disj_ w e. y w ) ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) |
47 |
46
|
ex |
|- ( ( ph /\ y C_ ~P X ) -> ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) |
48 |
30 36 47
|
syl2anc |
|- ( ( ph /\ y e. ~P dom M ) -> ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) |
49 |
48
|
ralrimiva |
|- ( ph -> A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) |
50 |
17 29 49
|
jca31 |
|- ( ph -> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) ) |
51 |
|
ismea |
|- ( M e. Meas <-> ( ( ( M : dom M --> ( 0 [,] +oo ) /\ dom M e. SAlg ) /\ ( M ` (/) ) = 0 ) /\ A. y e. ~P dom M ( ( y ~<_ _om /\ Disj_ w e. y w ) -> ( M ` U. y ) = ( sum^ ` ( M |` y ) ) ) ) ) |
52 |
50 51
|
sylibr |
|- ( ph -> M e. Meas ) |