Step |
Hyp |
Ref |
Expression |
1 |
|
psmeasure.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
psmeasure.h |
⊢ ( 𝜑 → 𝐻 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
3 |
|
psmeasure.m |
⊢ 𝑀 = ( 𝑥 ∈ 𝒫 𝑋 ↦ ( Σ^ ‘ ( 𝐻 ↾ 𝑥 ) ) ) |
4 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥 ∈ 𝒫 𝑋 ) |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝐻 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
6 |
4
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑋 ) → 𝑥 ⊆ 𝑋 ) |
7 |
|
fssres |
⊢ ( ( 𝐻 : 𝑋 ⟶ ( 0 [,] +∞ ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ ( 0 [,] +∞ ) ) |
9 |
4 8
|
sge0cl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑋 ) → ( Σ^ ‘ ( 𝐻 ↾ 𝑥 ) ) ∈ ( 0 [,] +∞ ) ) |
10 |
9 3
|
fmptd |
⊢ ( 𝜑 → 𝑀 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
11 |
3 9
|
dmmptd |
⊢ ( 𝜑 → dom 𝑀 = 𝒫 𝑋 ) |
12 |
11
|
feq2d |
⊢ ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ↔ 𝑀 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) ) |
13 |
10 12
|
mpbird |
⊢ ( 𝜑 → 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ) |
14 |
|
pwsal |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ SAlg ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ SAlg ) |
16 |
11 15
|
eqeltrd |
⊢ ( 𝜑 → dom 𝑀 ∈ SAlg ) |
17 |
13 16
|
jca |
⊢ ( 𝜑 → ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ) |
18 |
|
reseq2 |
⊢ ( 𝑥 = ∅ → ( 𝐻 ↾ 𝑥 ) = ( 𝐻 ↾ ∅ ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( Σ^ ‘ ( 𝐻 ↾ 𝑥 ) ) = ( Σ^ ‘ ( 𝐻 ↾ ∅ ) ) ) |
20 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑋 |
21 |
20
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝑋 ) |
22 |
|
fvexd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐻 ↾ ∅ ) ) ∈ V ) |
23 |
3 19 21 22
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = ( Σ^ ‘ ( 𝐻 ↾ ∅ ) ) ) |
24 |
|
res0 |
⊢ ( 𝐻 ↾ ∅ ) = ∅ |
25 |
24
|
fveq2i |
⊢ ( Σ^ ‘ ( 𝐻 ↾ ∅ ) ) = ( Σ^ ‘ ∅ ) |
26 |
|
sge00 |
⊢ ( Σ^ ‘ ∅ ) = 0 |
27 |
25 26
|
eqtri |
⊢ ( Σ^ ‘ ( 𝐻 ↾ ∅ ) ) = 0 |
28 |
27
|
a1i |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝐻 ↾ ∅ ) ) = 0 ) |
29 |
23 28
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∅ ) = 0 ) |
30 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀 ) → 𝜑 ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀 ) → 𝑦 ∈ 𝒫 dom 𝑀 ) |
32 |
11
|
pweqd |
⊢ ( 𝜑 → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋 ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀 ) → 𝒫 dom 𝑀 = 𝒫 𝒫 𝑋 ) |
34 |
31 33
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀 ) → 𝑦 ∈ 𝒫 𝒫 𝑋 ) |
35 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 → 𝑦 ⊆ 𝒫 𝑋 ) |
36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀 ) → 𝑦 ⊆ 𝒫 𝑋 ) |
37 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋 ) ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → 𝑋 ∈ 𝑉 ) |
38 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋 ) ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → 𝐻 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
39 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋 ) ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → 𝑀 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
40 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋 ) ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → 𝑦 ⊆ 𝒫 𝑋 ) |
41 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
42 |
41
|
cbvdisjv |
⊢ ( Disj 𝑤 ∈ 𝑦 𝑤 ↔ Disj 𝑧 ∈ 𝑦 𝑧 ) |
43 |
42
|
biimpi |
⊢ ( Disj 𝑤 ∈ 𝑦 𝑤 → Disj 𝑧 ∈ 𝑦 𝑧 ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋 ) ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → Disj 𝑧 ∈ 𝑦 𝑧 ) |
45 |
37 38 3 39 40 44
|
psmeasurelem |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋 ) ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑀 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑦 ) ) ) |
46 |
45
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) ) → ( 𝑀 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑦 ) ) ) |
47 |
46
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝒫 𝑋 ) → ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑀 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑦 ) ) ) ) |
48 |
30 36 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝒫 dom 𝑀 ) → ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑀 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑦 ) ) ) ) |
49 |
48
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 dom 𝑀 ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑀 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑦 ) ) ) ) |
50 |
17 29 49
|
jca31 |
⊢ ( 𝜑 → ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑀 ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑀 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑦 ) ) ) ) ) |
51 |
|
ismea |
⊢ ( 𝑀 ∈ Meas ↔ ( ( ( 𝑀 : dom 𝑀 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑀 ∈ SAlg ) ∧ ( 𝑀 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑀 ( ( 𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤 ) → ( 𝑀 ‘ ∪ 𝑦 ) = ( Σ^ ‘ ( 𝑀 ↾ 𝑦 ) ) ) ) ) |
52 |
50 51
|
sylibr |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |